1,301 research outputs found

    Mitigation of artifacts due to isolated acoustic heterogeneities in photoacoustic computed tomography using a variable data truncation-based reconstruction method

    Get PDF
    Photoacoustic computed tomography (PACT) is an emerging computed imaging modality that exploits optical contrast and ultrasonic detection principles to form images of the absorbed optical energy density within tissue. If the object possesses spatially variant acoustic properties that are unaccounted for by the reconstruction method, the estimated image can contain distortions. While reconstruction methods have recently been developed to compensate for this effect, they generally require the object's acoustic properties to be known a priori. To circumvent the need for detailed information regarding an object's acoustic properties, we previously proposed a half-time reconstruction method for PACT. A half-time reconstruction method estimates the PACT image from a data set that has been temporally truncated to exclude the data components that have been strongly aberrated. However, this method can be improved upon when the approximate sizes and locations of isolated heterogeneous structures, such as bones or gas pockets, are known. To address this, we investigate PACT reconstruction methods that are based on a variable data truncation (VDT) approach. The VDT approach represents a generalization of the half-time approach, in which the degree of temporal truncation for each measurement is determined by the distance between the corresponding ultrasonic transducer location and the nearest known bone or gas void location. Computer-simulated and experimental data are employed to demonstrate the effectiveness of the approach in mitigating artifacts due to acoustic heterogeneities

    A simple Fourier transform-based reconstruction formula for photoacoustic computed tomography with a circular or spherical measurement geometry

    Full text link
    Photoacoustic computed tomography (PACT), also known as optoacoustic tomography, is an emerging imaging modality that has great potential for a wide range of biomedical imaging applications. In this Note, we derive a hybrid reconstruction formula that is mathematically exact and operates on a data function that is expressed in the temporal frequency and spatial domains. This formula explicitly reveals new insights into how the spatial frequency components of the sought-after object function are determined by the temporal frequency components of the data function measured with a circular or spherical measurement geometry in two- and three-dimensional implementations of PACT, respectively. The structure of the reconstruction formula is surprisingly simple compared with existing Fourier-domain reconstruction formulae. It also yields a straightforward numerical implementation that is robust and two orders of magnitude more computationally efficient than filtered backprojection algorithms.Comment: http://iopscience.iop.org/0031-9155/57/23/N493
    • …
    corecore