21 research outputs found
Ophiolite association of Cape Fiolent (western part of the Mountainous Crimea) – the upper age constraint according to the U-Pb isotope dating of plagiorhyolites (Monakh Cliff)
The article presents the results of U-Pb isotope dating (SHRIMP-II, VSEGEI, Saint Petersburg) of zircon crystals extracted from plagiorhyolites of the Monakh Cliff in the area of Cape Fiolent in the western part of the Mountainous Crimea (southern suburb of Sevastopol). a concordant age estimate of 168.3±1.3 Ma was obtained from 20 zircon crystals. It exactly corresponds to the Bajocian/Bathonian boundary of the Middle Jurassic according to the International Chronostratigraphic Chart (February 2022 version). The available results of isotope dating of igneous rocks from the Mountainous Crimea, as well as their geochemical typification are synthesised. The plagiorhyolites of the Monakh Cliff in the area of Cape Fiolent are spatially, and most likely paragenetically, associated with the wallrock (Cape Vinogradny) and ore (Heraclea Plateau on the cognominal peninsula) massive sulphide formations, as well as pillow basalts, gabbroids, and serpentinized hyperbasites, combined into the ophiolite association of Cape Fiolent. The obtained dating is the upper age limit for the entire ophiolite association of Cape Fiolent
Safety and efficacy of convalescent plasma for COVID-19: the preliminary results of a clinical trial
Background. The lack of effective etiotropic therapy for COVID-19 has prompted researchers around the globe to seekr various methods of SARS-CoV-2 elimination, including the use of convalescent plasma.
Aim. The aim of this work was to study the safety and efficacy of the convalescence plasma treatment of severe COVID-19 using the plasma containing specific antibodies to the receptor binding domain (RBD) of SARS-CoV-2 S protein in a titer of at least 1:1000.
Methods. A single-center, randomized, prospective clinical study was performed at the FRCC FMBA of Russia with the participation of 86 patients who were stratified in two groups. The first group included 20 critically ill patients who were on mechanical ventilation the second group included 66 patients with moderate to severe COVID-19 and with spontaneous respiration. The patients in the second group were randomized into two cohorts in a ratio of 2:1. In the first cohort (46 patients), pathogen-reduced convalescent plasma was transfused (twice, 320 ml each), in the second cohort (20 patients) a similar amount of non-immune freshly frozen plasma was transfused to the patients.
Results. The use of plasma of convalescents in patients with severe COVID-19 being on mechanical ventilation does not affect the disease outcome in these patients. The mortality rate in this group was 60%, which corresponds to the average mortality of COVID patients on mechanical ventilation in our hospital. In the second group, clinical improvement was detected in 75% and 51%, for convalescent and non-immune plasma, respectively. Of the 46 people who received convalescent plasma, three patients (6.5%) were transferred to mechanical ventilation, two of them died. In the group receiving non-immune plasma, the need for mechanical ventilation also arose in three patients (15%), of which two died. The hospital mortality in the group of convalescent plasma was 4.3%, which is significantly lower than the average COVID-19 hospital mortality at our Center (6.73%) and more than two times lower than the hospital mortality in the control group (n=150), matched by age and by the disease severity.
Conclusions. Thus, we demonstrated a relative safety of convalescent plasma transfusion and the effectiveness of such therapy for COVID-19 at least in terms of the survival of hospitalized patients with severe respiratory failure without mechanical ventilation. In the absence of bioengineered neutralizing antibodies and effective etiotropic therapy, the use of hyperimmune convalescent plasma is the simplest and most effective method of specific etiopathogenetic therapy of severe forms of COVID-19
Post-Operative Functional Outcomes in Early Age Onset Rectal Cancer
Background: Impairment of bowel, urogenital and fertility-related function in patients treated for rectal cancer is common. While the rate of rectal cancer in the young (<50 years) is rising, there is little data on functional outcomes in this group. Methods: The REACCT international collaborative database was reviewed and data on eligible patients analysed. Inclusion criteria comprised patients with a histologically confirmed rectal cancer, <50 years of age at time of diagnosis and with documented follow-up including functional outcomes. Results: A total of 1428 (n=1428) patients met the eligibility criteria and were included in the final analysis. Metastatic disease was present at diagnosis in 13%. Of these, 40% received neoadjuvant therapy and 50% adjuvant chemotherapy. The incidence of post-operative major morbidity was 10%. A defunctioning stoma was placed for 621 patients (43%); 534 of these proceeded to elective restoration of bowel continuity. The median follow-up time was 42 months. Of this cohort, a total of 415 (29%) reported persistent impairment of functional outcomes, the most frequent of which was bowel dysfunction (16%), followed by bladder dysfunction (7%), sexual dysfunction (4.5%) and infertility (1%). Conclusion: A substantial proportion of patients with early-onset rectal cancer who undergo surgery report persistent impairment of functional status. Patients should be involved in the discussion regarding their treatment options and potential impact on quality of life. Functional outcomes should be routinely recorded as part of follow up alongside oncological parameters
Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey
Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10 years; 78.2% included were male with a median age of 37 years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020
The Catalytic Activity of Human REV1 on Undamaged and Damaged DNA
Eukaryotic REV1 serves as a scaffold protein for the coordination of DNA polymerases during DNA translesion synthesis. Besides this structural role, REV1 is a Y-family DNA polymerase with its own distributive deoxycytidyl transferase activity. However, data about the accuracy and efficiency of DNA synthesis by REV1 in the literature are contrasting. Here, we expressed and purified the full-length human REV1 from Saccharomyces cerevisiae and characterized its activity on undamaged DNA and a wide range of damaged DNA templates. We demonstrated that REV1 carried out accurate synthesis opposite 8-oxoG and O6-meG with moderate efficiency. It also replicated thymine glycol surprisingly well in an error-prone manner, but was blocked by the intrastrand 1,2-GG cisplatin crosslink. By using the 1,N6-ethenoadenine and 7-deaza-adenine lesions, we have provided biochemical evidence of the importance for REV1 functioning of the Hoogsteen face of template A, the second preferable template after G
Fabrication and Magneto-Optical Properties of Yb2O3 Based Ceramics
Transparent ceramics based on ytterbium oxide have been successfully produced by vacuum sintering of self-propagating high-temperature synthesized powders with use of a La2O3 sintering aid. Phase composition and microstructure of the initial powders were studied by X-ray diffraction analysis and scanning electron microscopy. It was found that addition of 5 mol.% of La2O3 does not cause formation of secondary phases in the Yb2O3 powders. The 4% La:Yb2O3 ceramics showed the best in-line transmittance of 73% at a wavelength of 2 μm among the studied samples. Dependence of the Verdet constant on wavelength was investigated in the range of 0.4–2 μm. The most promising finding is use of the obtained material as Faraday isolators in the wavelength region of ~1.5 μm, where there are no absorption bands, and the Verdet constant is 8.6 rad/(T*m)
Tribology properties of hybrid graphene oxide materials as lubricant additives
Graphene oxide was synthesized by the modified Hammers method. With managed hydrolysis in isopropanol solution obtained hybrid material “graphene oxide - copper oxide nanoparticles”. The phase composition of the hybrid material was studied by X-ray phase analysis and UV-visible spectroscopy. By ultrasonic processing dispersions of synthesized materials in glycerol were produced. The concentration of lubricating additives in the lube oil was 0.05 wt. %. The tribological properties of dispersions were investigated using a pin-on-disc friction machine. Tests showed that in the presence of graphene oxide, the friction coefficient was ~0.02, while with the addition of a hybrid material, the coefficient of friction was ~0.035. This is due to various mechanisms of lubrication. Reduction of the coefficient of friction in the presence of graphene oxide is associated with the formation of tribocarbon on the porosity of frictional contacts. While the addition of a hybrid material containing the CuO nanoparticles leads to the formation of a third body
Tribology properties of hybrid graphene oxide materials as lubricant additives
Graphene oxide was synthesized by the modified Hammers method. With managed hydrolysis in isopropanol solution obtained hybrid material “graphene oxide - copper oxide nanoparticles”. The phase composition of the hybrid material was studied by X-ray phase analysis and UV-visible spectroscopy. By ultrasonic processing dispersions of synthesized materials in glycerol were produced. The concentration of lubricating additives in the lube oil was 0.05 wt. %. The tribological properties of dispersions were investigated using a pin-on-disc friction machine. Tests showed that in the presence of graphene oxide, the friction coefficient was ~0.02, while with the addition of a hybrid material, the coefficient of friction was ~0.035. This is due to various mechanisms of lubrication. Reduction of the coefficient of friction in the presence of graphene oxide is associated with the formation of tribocarbon on the porosity of frictional contacts. While the addition of a hybrid material containing the CuO nanoparticles leads to the formation of a third body
Perfluorosulfonic Acid Membranes with Short and Long Side Chains and Their Use in Sensors for the Determination of Markers of Viral Diseases in Saliva
The development of accessible express methods to determine markers of viral diseases in saliva is currently an actual problem. Novel cross-sensitive sensors based on Donnan potential with bio-comparable perfluorosulfonic acid membranes for the determination of salivary viral markers (N-acetyl-L-methionine, L-carnitine, and L-lysine) were proposed. Membranes were formed by casting from dispersions of Nafion or Aquivion in N-methyl-2-pyrollidone or in a mixture of isopropyl alcohol and water. The influence of the polymer equivalent weight and the nature of dispersing liquid on water uptake, ion conductivity, and slope of Donnan potential for the membranes in H+ and Na+ form was investigated. The varying of the sorption and transport properties of perfluorosulfonic acid membranes provided a change in the distribution of the sensor sensitivity to N-acetyl-L-methionine, L-carnitine, and L-lysine ions, which was necessary for multisensory system development. The simultaneous determination of three analytes, and the group analysis of them in artificial saliva solutions, was performed. The errors of N-acetyl-L-methionine and L-carnitine determination were 4–12 and 3–11%, respectively. The determination of L-lysine was complicated by its interaction with Ca2+ ions. The error of the group analysis was no greater than 9%. The reverse character of the viral markers’ sorption by the membranes provided long-term sensor operation
Coupling to short linear motifs creates versatile PME-1 activities in PP2A holoenzyme demethylation and inhibition
Protein phosphatase 2A (PP2A) holoenzymes target broad substrates by recognizing short motifs via regulatory subunits. PP2A methylesterase 1 (PME-1) is a cancer-promoting enzyme and undergoes methylesterase activation upon binding to the PP2A core enzyme. Here, we showed that PME-1 readily demethylates different families of PP2A holoenzymes and blocks substrate recognition in vitro. The high-resolution cryoelectron microscopy structure of a PP2A-B56 holoenzyme-PME-1 complex reveals that PME-1 disordered regions, including a substrate-mimicking motif, tether to the B56 regulatory subunit at remote sites. They occupy the holoenzyme substratebinding groove and allow large structural shifts in both holoenzyme and PME-1 to enable multipartite contacts at structured cores to activate the methylesterase. B56 interface mutations selectively block PME-1 activity toward PP2A-B56 holoenzymes and affect the methylation of a fraction of total cellular PP2A. The B56 interface mutations allow us to uncover B56-specific PME-1 functions in p53 signaling. Our studies reveal multiple mechanisms of PME-1 in suppressing holoenzyme functions and versatile PME-1 activities derived from coupling substrate-mimicking motifs to dynamic structured cores