2 research outputs found

    The Effect of a New N-hetero Cycle Derivative on Behavior and Inflammation against the Background of Ischemic Stroke

    No full text
    Ischemic stroke triggers a whole cascade of pathological changes in the brain, one of which is postischemic inflammation. Since in such cases thrombolytic therapy is often not possible, methods that modulate inflammation and affect microglia become particularly interesting. We synthesized 3-(2-oxo-4-phenylpyrrolidin-1-yl)propane-1-sulfonate calcium(II) (Compound 4) and studied its anti-inflammatory activity in in vitro and in vivo models of inflammation and ischemia. Macrophage cell line RAW 264.7 was treated with lipopolysaccharides (LPS) and Compound 4 at various dosages to study the cytokine profile using real-time PCR and cytometric bead array (CBA). Stroke in rats was simulated by the middle cerebral artery occlusion method (MCAO). Several tests were performed to characterize the neurological deficit and locomotor activity of the rats, and afterwards, postmortem, the number of astrocytes was counted using immunohistochemistry. Compound 4 in in vitro tests dose-dependently reduced the expression of interleukin-1β (IL1β), and inducible nitric oxide synthase (iNOS) genes in cell culture and increased the concentration of cytokines: interleukin-2, 4, 6 (IL-2, IL-4, and IL-6). In vivo Compound 4 increased the orienting-exploratory behavior, and reduced neurological and motor deficit. The number of astrocytes that promote and support inflammation was lower in the group treated with Compound 4. The stroke volume measured by magnetic resonance imaging (MRI) showed no difference. We have shown that Compound 4 demonstrates anti-inflammatory activity by increasing the synthesis of anti-inflammatory and reducing pro-inflammatory cytokines, and positively affects the neurological deficit in rats. Thus, Compound 4 has a high therapeutic potential in the management of patients after a stroke and requires further study of its neuroprotective properties

    Systemic and local immunosuppression in glioblastoma and its prognostic significance

    Get PDF
    The effectiveness of tumor therapy, especially immunotherapy and oncolytic virotherapy, critically depends on the activity of the host immune cells. However, various local and systemic mechanisms of immunosuppression operate in cancer patients. Tumor-associated immunosuppression involves deregulation of many components of immunity, including a decrease in the number of T lymphocytes (lymphopenia), an increase in the levels or ratios of circulating and tumor-infiltrating immunosuppressive subsets [e.g., macrophages, microglia, myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs)], as well as defective functions of subsets of antigen-presenting, helper and effector immune cell due to altered expression of various soluble and membrane proteins (receptors, costimulatory molecules, and cytokines). In this review, we specifically focus on data from patients with glioblastoma/glioma before standard chemoradiotherapy. We discuss glioblastoma-related immunosuppression at baseline and the prognostic significance of different subsets of circulating and tumor-infiltrating immune cells (lymphocytes, CD4+ and CD8+ T cells, Tregs, natural killer (NK) cells, neutrophils, macrophages, MDSCs, and dendritic cells), including neutrophil-to-lymphocyte ratio (NLR), focus on the immune landscape and prognostic significance of isocitrate dehydrogenase (IDH)-mutant gliomas, proneural, classical and mesenchymal molecular subtypes, and highlight the features of immune surveillance in the brain. All attempts to identify a reliable prognostic immune marker in glioblastoma tissue have led to contradictory results, which can be explained, among other things, by the unprecedented level of spatial heterogeneity of the immune infiltrate and the significant phenotypic diversity and (dys)functional states of immune subpopulations. High NLR is one of the most repeatedly confirmed independent prognostic factors for shorter overall survival in patients with glioblastoma and carcinoma, and its combination with other markers of the immune response or systemic inflammation significantly improves the accuracy of prediction; however, more prospective studies are needed to confirm the prognostic/predictive power of NLR. We call for the inclusion of dynamic assessment of NLR and other blood inflammatory markers (e.g., absolute/total lymphocyte count, platelet-to-lymphocyte ratio, lymphocyte-to-monocyte ratio, systemic immune-inflammation index, and systemic immune response index) in all neuro-oncology studies for rigorous evaluation and comparison of their individual and combinatorial prognostic/predictive significance and relative superiority
    corecore