156 research outputs found

    DEVELOPMENT AND COMPARISON OF ORALLY INHALABLE SUSTAINED RELEASE FORMULATIONS FOR THREE RESPIRATORY DRUGS FOR ASTHMA

    Get PDF
    The present work was designed to develop and compare orally inhalable sustained release formulation for salbutamol sulphate (SS), ambroxol hydrochloride (AH) and montelukast sodium (MS).The emulsion solvent evaporation method was used to prepare microparticles with the polymers. The prepared polymer encapsulated microparticles were blended with carrier inhalable lactose and filled in size 3 hard empty gelatin capsule. Formulations T1-T9 were prepared with 1:1 ratio of PLGA (50:50), PLGA (75:25) and Eudragit RS100. The formulation T1 prepared with SS:PLGA (50:50) produces best result when compared with other formulations T2-T9. Formulation T1 gives in vitro release 91.23% at 12 h and having particle size of microparticles (D0.5 µm) 1.94±0.6 and respiratory fraction 34.9± 2.59 %

    Performance Evaluation of Tergitol NP-7 and Triton X-114 for the Removal of Crystal Violet Using Cloud-point Extraction

    Get PDF
    In the present study, a cloud-point extraction process has been developed to remove crystal violet dye using two different non-ionic surfactants, Tergitol NP-7 and Triton X-114. For different concentrations of dye and surfactant, cloud-point temperatures were determined for Tergitol NP-7 and Triton X-114. The effectiveness of two different surfactants, Triton X-114 and Tergitol NP-7, for the removal of dye from synthetic solution was investigated. The effects of surfactant and dye concentrations, as well as operating temperature on phase volume ratio, preconcentration factor, distribution coefficient, and extraction efficiency were studied. The optimum dosage of surfactant can be 0.05 M for both surfactants for removing crystal violet. The results showed that 97 % of crystal violet can quantitatively be removed by cloud-point extraction at 0.05 M surfactant concentration in a single extraction. The performance of Tergitol NP-7 was found to be more effective than Triton X-114 for the removal of crystal violet using CPE

    Standardised quantitative assays for anti-SARS-CoV-2 immune response used in vaccine clinical trials by the CEPI Centralized Laboratory Network: a qualification analysis

    Get PDF
    Background: Accurate quantitation of immune markers is crucial for ensuring reliable assessment of vaccine efficacy against infectious diseases. This study was designed to confirm standardised performance of SARS-CoV-2 assays used to evaluate COVID-19 vaccine candidates at the initial seven laboratories (in North America, Europe, and Asia) of the Coalition for Epidemic Preparedness Innovations (CEPI) Centralized Laboratory Network (CLN). Methods: Three ELISAs (pre-spike protein, receptor binding domain, and nucleocapsid), a microneutralisation assay (MNA), a pseudotyped virus-based neutralisation assay (PNA), and an IFN-γ T-cell ELISpot assay were developed, validated or qualified, and transferred to participating laboratories. Immune responses were measured in ELISA laboratory units (ELU) for ELISA, 50% neuralisation dilution (ND50) for MNA, 50% neutralisation titre (NT50) for PNA, and spot-forming units for the ELISpot assay. Replicate assay results of well characterised panels and controls of blood samples from individuals with or without SARS-CoV-2 infection were evaluated by geometric mean ratios, standard deviation, linear regression, and Spearman correlation analysis for consistency, accuracy, and linearity of quantitative measurements across all laboratories. Findings: High reproducibility of results across all laboratories was demonstrated, with interlaboratory precision of 4·1–7·7% coefficient of variation for all three ELISAs, 3·8–19·5% for PNA, and 17·1–24·1% for MNA, over a linear range of 11–30 760 ELU per mL for the three ELISAs, 14–7876 NT50 per mL for PNA, and 21–25 587 ND50 per mL for MNA. The MNA was also adapted for detection of neutralising antibodies against the major SARS-CoV-2 variants of concern. The results of PNA and MNA (r=0·864) and of ELISA and PNA (r=0·928) were highly correlated. The IFN-γ ELISpot interlaboratory variability was 15·9–49·9% coefficient of variation. Sensitivity and specificity were close to 100% for all assays. Interpretation: The CEPI CLN provides accurate quantitation of anti-SARS-CoV-2 immune response across laboratories to allow direct comparisons of different vaccine formulations in different geographical areas. Lessons learned from this programme will serve as a model for faster responses to future pandemic threats and roll-out of effective vaccines. Funding: CEPI

    The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution

    Full text link
    This work documents the first version of the U.S. Department of Energy (DOE) new Energy Exascale Earth System Model (E3SMv1). We focus on the standard resolution of the fully coupled physical model designed to address DOE mission-relevant water cycle questions. Its components include atmosphere and land (110-km grid spacing), ocean and sea ice (60 km in the midlatitudes and 30 km at the equator and poles), and river transport (55 km) models. This base configuration will also serve as a foundation for additional configurations exploring higher horizontal resolution as well as augmented capabilities in the form of biogeochemistry and cryosphere configurations. The performance of E3SMv1 is evaluated by means of a standard set of Coupled Model Intercomparison Project Phase 6 (CMIP6) Diagnosis, Evaluation, and Characterization of Klima simulations consisting of a long preindustrial control, historical simulations (ensembles of fully coupled and prescribed SSTs) as well as idealized CO2 forcing simulations. The model performs well overall with biases typical of other CMIP-class models, although the simulated Atlantic Meridional Overturning Circulation is weaker than many CMIP-class models. While the E3SMv1 historical ensemble captures the bulk of the observed warming between preindustrial (1850) and present day, the trajectory of the warming diverges from observations in the second half of the twentieth century with a period of delayed warming followed by an excessive warming trend. Using a two-layer energy balance model, we attribute this divergence to the model’s strong aerosol-related effective radiative forcing (ERFari+aci = -1.65 W/m2) and high equilibrium climate sensitivity (ECS = 5.3 K).Plain Language SummaryThe U.S. Department of Energy funded the development of a new state-of-the-art Earth system model for research and applications relevant to its mission. The Energy Exascale Earth System Model version 1 (E3SMv1) consists of five interacting components for the global atmosphere, land surface, ocean, sea ice, and rivers. Three of these components (ocean, sea ice, and river) are new and have not been coupled into an Earth system model previously. The atmosphere and land surface components were created by extending existing components part of the Community Earth System Model, Version 1. E3SMv1’s capabilities are demonstrated by performing a set of standardized simulation experiments described by the Coupled Model Intercomparison Project Phase 6 (CMIP6) Diagnosis, Evaluation, and Characterization of Klima protocol at standard horizontal spatial resolution of approximately 1° latitude and longitude. The model reproduces global and regional climate features well compared to observations. Simulated warming between 1850 and 2015 matches observations, but the model is too cold by about 0.5 °C between 1960 and 1990 and later warms at a rate greater than observed. A thermodynamic analysis of the model’s response to greenhouse gas and aerosol radiative affects may explain the reasons for the discrepancy.Key PointsThis work documents E3SMv1, the first version of the U.S. DOE Energy Exascale Earth System ModelThe performance of E3SMv1 is documented with a set of standard CMIP6 DECK and historical simulations comprising nearly 3,000 yearsE3SMv1 has a high equilibrium climate sensitivity (5.3 K) and strong aerosol-related effective radiative forcing (-1.65 W/m2)Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/151288/1/jame20860_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/151288/2/jame20860.pd

    Activity Coefficients at Infinite Dilution for Organic Compounds Dissolved in 1-Alkyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imide Ionic Liquids Having Six-, Eight-, and Ten-Carbon Alkyl Chains

    Get PDF
    International audienceActivity coefficients at infinite dilution (gamma(proportional to)(1,2)) for 40 diverse probe solutes, including various (cyclo)alkanes, alkenes, alkynes, aromatic hydrocarbons, alcohols, thiophene, ethers, nitroalkanes, and ketones, were measured by inverse gas chromatography at temperatures from 323 to 343 K in three homologous 1-alkyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquids (ILs), bearing hexyl, octyl, and decyl side chains. The retention data were further converted to gas-to-IL and water-to-IL partition coefficients using the corresponding gas-to-water partition coefficients. Both sets of partition coefficients were analyzed using the modified Abraham solvation parameter model, with the derived equations tightly correlating the experimental gas-to-IL and water-to-IL partition coefficient data to within average standard deviations of 0.088 and 0.111 log units, respectively

    Enhanced catalytic and supercapacitor activities of DNA encapsulated b-MnO2 nanomaterials

    Get PDF
    A new approach is developed for the aqueous phase formation of flake-like and wire-like b-MnO2 nanomaterials on a DNA scaffold at room temperature (RT) within a shorter time scale. The b-MnO2 nanomaterials having a band gap energy B3.54 eV are synthesized by the reaction of Mn(II) salt with NaOH in the presence of DNA under continuous stirring. The eventual diameter of the MnO2 particles in the wire-like and flake-like morphology and their nominal length can be tuned by changing the DNA to Mn(II) salt molar ratio and by controlling other reaction parameters. The synthesized b-MnO2 nanomaterials exhibit pronounced catalytic activity in organic catalysis reaction for the spontaneous polymerization of aniline hydrochloride to emeraldine salt (polyaniline) at RT and act as a suitable electrode material in electrochemical supercapacitor applications. From the electrochemical experiment, it was observed that the b-MnO2 nanomaterials showed different specific capacitance (Cs) values for the flake-like and wire-like structures. The Cs value of 112 F g�1 at 5 mV s�1 was observed for the flake-like structure, which is higher compared to that of the wire-like structure. The flake-like MnO2 nanostructure exhibited an excellent long-term stability, retaining 81% of initial capacitance even after 4000 cycles, whereas for the wire-like MnO2 nanostructure, capacitance decreased and the retention value was only 70% over 4000 cycles. In the future, the present approach can be extended for the formation of other oxide-based materials using DNA as a promising scaffold for different applications such as homogeneous and heterogeneous organic catalysis reactions, Li-ion battery materials or for the fabrication of other high performance energy storage device

    COSMO-RS-Based Screening of Ionic Liquids as Green Solvents in Denitrification Studies

    Full text link
    corecore