152 research outputs found

    Infrared Fixed Point Structure in Minimal Supersymmetric Standard Model with Baryon and Lepton Number Violation

    Get PDF
    We study in detail the renomalization group evolution of Yukawa couplings and soft supersymmetry breaking trilinear couplings in the minimal supersymmetric standard model with baryon and lepton number violation. We obtain the exact solutions of these equations in a closed form, and then depict the infrared fixed point structure of the third generation Yukawa couplings and the highest generation baryon and lepton number violating couplings. Approximate analytical solutions for these Yukawa couplings and baryon and lepton number violating couplings, and the soft supersymmetry breaking couplings are obtained in terms of their initial values at the unification scale. We then numerically study the infrared fixed surfaces of the model, and illustrate the approach to the fixed points.Comment: 16 pages REVTeX, figures embedded as epsfigs, replaced with version to appear in Physical Review D, minor typographical errors eliminated and references reordered, figures correcte

    Nonminimal Supersymmetric Standard Model with Baryon and Lepton Number Violation

    Get PDF
    We carry out a comprehensive analysis of the nonminimal supersymmetric standard model (NMSSM) with baryon and lepton number violation. We catalogue the baryon and lepton number violating dimension four and five operators of the model. We then study the renormalization group evolution and infrared stable fixed points of the Yukawa couplings and the soft supersymmetry breaking trilinear couplings of this model with baryon and lepton number (and R-parity) violation involving the heaviest generations. We show analytically that in the Yukawa sector of the NMSSM there is only one infrared stable fixed point. This corresponds to a non-trivial fixed point for the top-, bottom-quark Yukawa couplings and the BB violating coupling λ233\lambda_{233}'', and a trivial one for all other couplings. All other possible fixed points are either unphysical or unstable in the infrared region. We also carry out an analysis of the renormalization group equations for the soft supersymmetry breaking trilinear couplings, and determine the corresponding fixed points for these couplings. We then study the quasi-fixed point behaviour, both of the third generation Yukawa couplings and the baryon number violating coupling, and those of the soft supersymmetry breaking trilinear couplings. From the analysis of the fixed point behaviour, we obtain upper and lower bounds on the baryon number violating coupling λ233\lambda_{233}'', as well as on the soft supersymmetry breaking trilinear couplings. Our analysis shows that the infrared fixed point behavior of NMSSM with baryon and lepton number violation is similar to that of MSSM.Comment: 35 pages, Revtex, 6 eps fig

    W physics at the ILC with polarized beams as a probe of the Littlest Higgs Model

    Full text link
    We study the possibility of using W pair production and leptonic decay of one of the W's at the ILC with polarized beams as a probe of the Littlest Higgs Model. We consider cross-sections, polarization fractions of the W's, leptonic decay energy and angular distributions, and left-right polarization asymmetry as probes of the model. With parameter values allowed by present experimental constraints detectable effects on these observables at typical ILC energies of 500 GeV and 800 GeV will be present. Beam polarization is further found to enhance the sensitivity.Comment: 17 pages, plain latex, 6 figures, replaced with version accepted by JHEP, typographical errors removed, notation and references improved, new references added, explanation added in appendix regarding beam polarization dependenc

    Review of chiral perturbation theory

    Full text link
    A review of chiral perturbation theory and that of recent developments on the comparison of its predictions with experiment is presented. Some interesting topics with scope for further elaboration are touched upon.Comment: 7 pages in revtex, Invited talk at the workshop, QCD2002, Indian Institute of Technology, Kanpur, November 18-22, 2002, to appear in the proceeding

    Model independent bounds on the modulus of the pion form factor on the unitarity cut below the ωπ\omega\pi threshold

    Full text link
    We calculate upper and lower bounds on the modulus of the pion electro magnetic form factor on the unitarity cut below the ωπ\omega\pi inelastic threshold, using as input the phase in the elastic region known via the Fermi-Watson theorem from the ππ\pi\pi PP-wave phase shift, and a suitably weighted integral of the modulus squared above the inelastic threshold. The normalization at t=0t=0, the pion charge radius and experimental values at spacelike momenta are used as additional input information. The bounds are model independent, in the sense that they do not rely on specific parametrizations and do not require assumptions on the phase of the form factor above the inelastic threshold. The results provide nontrivial consistencychecks on the recent experimental data on the modulus available below the ωπ\omega\pi threshold from e+ee^+ e^- annihilation and τ\tau-decay experiments. In particular, at low energies the calculated bounds offer a more precise description of the modulus than the experimental data.Comment: 12 pages, 23 figures, prepared using EPJ style files; v2 corresponds to proofs version to appear in European Physical Journal C; extended discussion compared to v

    A New Technique for Detecting Supersymmetric Dark Matter

    Full text link
    We estimate the event rate for excitation of atomic transition by photino-like dark matter. For excitations of several eV, this event rate can exceed naive cross-section by many orders of magnitude. Although the event rate for these atomic excitation is smaller than that of nuclear recoil off of non-zero spin nuclei, the photons emitted by the deexcitation are easier to detect than low-energy nuclear recoils. For many elements, there are several low-lying states with comparable excitation rates, thus, spectral ratios could be used to distinguish signal from background.Comment: 6 pages plain te

    Signals of additional Z boson in e+e-\to W+W^- at the ILC with polarized beams

    Full text link
    We consider the possibility of fingerprinting the presence of heavy additional Z' bosons that arise naturally in extensions of the standard model such as E_6 models and left-right symmetric models, through their mixing with the standard model Z boson. By considering a class of observables including total cross sections, energy distributions and angular distributions of decay leptons we find significant deviation from the standard model predictions for these quantities with right-handed electrons and left-handed positrons at \sqrt{s}=800 GeV. The deviations being less pronounced at smaller centre of mass energies as the models are already tightly constrained. Our work suggests that the ILC should have a strong beam polarization physics program particularly with these configurations. On the other hand, a forward backward asymmetry and lepton fraction in the backward direction are more sensitive to new physics with realistic polarization due to interesting interplay with the neutrino t- channel diagram. This process complements the study of fermion pair production processes that have been considered for discrimination between these models.Comment: 23 pages, 9 figures, uses plain latex; substantially improved discussion, references added, version accepted for publication in JHE

    CP Violation Beyond the Standard Model and Tau Pair Production in e+ee^+ e^- Collisions

    Full text link
    We show that the CP-violating dipole form factors of the tau lepton can be of the order of α/π\alpha/\pi in units of the length scale set by the inverse ZZ boson mass. We propose a few observables which are sensitive to these form factors at LEP2 and higher e^+e^- collision energies.Comment: 11 pages LaTeX + 2 figure

    The isospin symmetry breaking effects in Ke4K_{e4} decays

    Full text link
    The Fermi-Watson theorem is generalized to the case of two coupled channels with different masses and applied to final state interaction in Ke4K_{e4} decays. The impact of considered effect on the phase of the ππ\pi\pi scattering is estimated and shown that it can be crucial for scattering lengths extraction from experimental data on Ke4K_{e4} decays

    Theory of unitarity bounds and low energy form factors

    Full text link
    We present a general formalism for deriving bounds on the shape parameters of the weak and electromagnetic form factors using as input correlators calculated from perturbative QCD, and exploiting analyticity and unitarity. The values resulting from the symmetries of QCD at low energies or from lattice calculations at special points inside the analyticity domain can beincluded in an exact way. We write down the general solution of the corresponding Meiman problem for an arbitrary number of interior constraints and the integral equations that allow one to include the phase of the form factor along a part of the unitarity cut. A formalism that includes the phase and some information on the modulus along a part of the cut is also given. For illustration we present constraints on the slope and curvature of the K_l3 scalar form factor and discuss our findings in some detail. The techniques are useful for checking the consistency of various inputs and for controlling the parameterizations of the form factors entering precision predictions in flavor physics.Comment: 11 pages latex using EPJ style files, 5 figures; v2 is version accepted by EPJA in Tools section; sentences and figures improve
    corecore