58 research outputs found

    Adaptation, compromise, and constraint: the development, morphometrics, and behavioral basis of a fighter-flier polymorphism in male Hoplothrips karnyi (Insecta: Thysanoptera)

    Full text link
    Males of the colonial, wing-polymorphic thrips Hoplothrips karnyi (Hood) fight each other with their forelegs in defense of communal female oviposition areas. In this study, males were reared individually under varying conditions of food deprivation to investigate the developmental cues used in morph determination and the relationships between wing morph, developmental time in each instar, propupal weight, and five adult morphological characters associated with fighting ability and dispersal ability. Males deprived of food for five days midway through the second (final) larval instar had smaller propupal weights and were more likely to develop wings than males deprived of food in the first instar or control males. However, the mean propupal weight of all males that developed wings was not significantly less than that of wingless males. Wing morph of female parents had no measurable effect on this character in the offspring. Wingless males possess relatively larger fore-femora and prothoraces than do winged males, but winged males possess relatively larger pterothoraces (Fig. 1). Behavioral observations of wingless and winged males of similar weight as propupae showed that wingless males won fights and became dominant in oviposition areas. Thus, a trade-off exists between characters associated with male fighting and dispersal ability. The cost of wings, in terms of fore-femora size and prothorax size, increased with propupal weight. Wingless males that developed in the experimental treatment that produced a high proportion of winged males were relatively small in size, and were intermediate in body shape with respect to winged males and other wingless males (Fig. 2). This shape intermediacy indicates that there may be developmental constraints on alternative tactics of resource allocation. Total developmental time varied between wing morphs, but was not correlated with propupal weight or adult morphological characters of winged or wingless males. For wingless males that developed in the treatment that produced a high proportion of winged males, adult morphological characters were negatively correlated with the duration of the second instar. This correlation suggests that the development of small wingless males involves a compromise between the benefits of large adult size and the costs of prolonging the second instar to increase the probability of becoming larger.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46886/1/265_2004_Article_BF00299892.pd

    Moving Your Sons to Safety: Galls Containing Male Fig Wasps Expand into the Centre of Figs, Away From Enemies

    Get PDF
    Figs are the inflorescences of fig trees (Ficus spp., Moraceae). They are shaped like a hollow ball, lined on their inner surface by numerous tiny female flowers. Pollination is carried out by host-specific fig wasps (Agaonidae). Female pollinators enter the figs through a narrow entrance gate and once inside can walk around on a platform generated by the stigmas of the flowers. They lay their eggs into the ovules, via the stigmas and styles, and also gall the flowers, causing the ovules to expand and their pedicels to elongate. A single pollinator larva develops in each galled ovule. Numerous species of non-pollinating fig wasps (NPFW, belonging to other families of Chalcidoidea) also make use of galled ovules in the figs. Some initiate galls, others make use of pollinator-generated galls, killing pollinator larvae. Most NPFW oviposit from the outside of figs, making peripherally-located pollinator larvae more prone to attack. Style length variation is high among monoecious Ficus spp. and pollinators mainly oviposit into more centrally-located ovules, with shorter styles. Style length variation is lower in male (wasp-producing) figs of dioecious Ficus spp., making ovules equally vulnerable to attack by NPFW at the time that pollinators oviposit

    Risks and benefits of lethal male fighting in the colonial, polygynous thrips Hoplothrips karnyi (Insecta: Thysanoptera)

    Full text link
    Males of Hoplothrips karnyi (Hood) (Insecta: Thysanoptera), a colonial fungus-feeding thrips, fight each other in defense of communal egg mass sites, where they mate with females that come to oviposit. Fighting males stab each other with their enlarged, armed forelegs and hit each other with their abdomens. Escalated fights occur between large males of similar size. Fights are often lethal; males that died during observations fought more frequently than other males, were stabbed more often and more severely than other males, and were relatively large, but somewhat smaller than their opponents. Large males tend to win fights and guard egg masses, and they secure about 80% of last matings before ovipositions. Guarding males apparently assess female reproductive condition by putting their forelegs partially around females' abdomens; guarding males, but not nonguarding males, mate preferentially with females that have yet to oviposit. Non-guarding males mate with females away from egg masses, sneak matings at egg masses, and occasionally challenge guarding males. Challenges tend to follow matings by non-guarding males at egg masses. Each of four observed or inferred takeovers was followed by the death of the guarding male that lost. Male fighting strategies are discussed in terms of the consistency of lethal fighting with game theory models. Guardin males appear to pursue a classical “hawk” strategy of “escalate until injured or victorious”. This strategy may be advantageous because only large males become guarders, the mating success of guarders greatly exceeds that of non-guarders, and high population viscosity ensures that benefits from killing an opponent accrue directly to gaurders. The occurrence of challenges by large non-guarders implies that fighting ability and resource value asymmetries between males change over time; such changes may result from the energetic costs of guarding, injury to guarding males, or depletion of guarding males' supply of sperm.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46885/1/265_2004_Article_BF00299845.pd

    Redescription of Aduncothrips asiaticus

    No full text

    Binomial Data of Some Predacious Thrips

    No full text
    • …
    corecore