2 research outputs found

    Cell-free DNA maps COVID-19 tissue injury and risk of death and can cause tissue injury

    No full text
    INTRODUCTION The clinical course of coronavirus 2019 (COVID-19) is heterogeneous, ranging from mild to severe multiorgan failure and death. In this study, we analyzed cell-free DNA (cfDNA) as a biomarker of injury to define the sources of tissue injury that contribute to such different trajectories.METHODS We conducted a multicenter prospective cohort study to enroll patients with COVID-19 and collect plasma samples. Plasma cfDNA was subject to bisulfite sequencing. A library of tissue-specific DNA methylation signatures was used to analyze sequence reads to quantitate cfDNA from different tissue types. We then determined the correlation of tissue-specific cfDNA measures to COVID-19 outcomes. Similar analyses were performed for healthy controls and a comparator group of patients with respiratory syncytial virus and influenza.RESULTS We found markedly elevated levels and divergent tissue sources of cfDNA in COVID-19 patients compared with patients who had influenza and/or respiratory syncytial virus and with healthy controls. The major sources of cfDNA in COVID-19 were hematopoietic cells, vascular endothelium, hepatocytes, adipocytes, kidney, heart, and lung. cfDNA levels positively correlated with COVID-19 disease severity, C-reactive protein, and D-dimer. cfDNA profile at admission identified patients who subsequently required intensive care or died during hospitalization. Furthermore, the increased cfDNA in COVID-19 patients generated excessive mitochondrial ROS (mtROS) in renal tubular cells in a concentration-dependent manner. This mtROS production was inhibited by a TLR9-specific antagonist.CONCLUSION cfDNA maps tissue injury that predicts COVID-19 outcomes and may mechanistically propagate COVID-19–induced tissue injury.FUNDING Intramural Targeted Anti–COVID-19 grant, NIH

    Baseline Lung Allograft Dysfunction After Bilateral Lung Transplantation Is Associated With an Increased Risk of Death: Results From a Multicenter Cohort Study

    No full text
    Background. A prior single-center, retrospective cohort study identified baseline lung allograft dysfunction (BLAD) as a risk factor for death in bilateral lung transplant recipients. In this multicenter prospective cohort study, we test the association of BLAD with death in bilateral lung transplant recipients, identify clinical risk factors for BLAD, and assess its association with allograft injury on the molecular level. Methods. This multicenter, prospective cohort study included 173 bilateral lung transplant recipients that underwent serial pulmonary function testing and plasma collection for donor-derived cell-free DNA at prespecified time points. BLAD was defined as failure to achieve ≥80% predicted for both forced expiratory volume in 1 s and forced vital capacity after lung transplant, on 2 consecutive measurements at least 3 mo apart. Results. BLAD was associated with increased risk of death (hazard ratio, 1.97; 95% confidence interval [CI], 1.05-3.69; P = 0.03) but not chronic lung allograft dysfunction alone (hazard ratio, 1.60; 95% CI, 0.87-2.95; P = 0.13). Recipient obesity (odds ratio, 1.69; 95% CI, 1.15-2.80; P = 0.04) and donor age (odds ratio, 1.03; 95% CI, 1.02-1.05; P = 0.004) increased the risk of developing BLAD. Patients with BLAD did not demonstrate higher log10(donor-derived cell-free DNA) levels compared with no BLAD (slope [SE]: –0.0095 [0.0007] versus –0.0109 [0.0007]; P = 0.15). Conclusions. BLAD is associated with an increased risk of death following lung transplantation, representing an important posttransplant outcome with valuable prognostic significance; however, early allograft specific injury on the molecular level does not increase the risk of BLAD, supporting further mechanistic insight into disease pathophysiology
    corecore