2 research outputs found

    Optimization of glutathione production in batch and fed-batch cultures by the wild-type and recombinant strains of the methylotrophic yeast Hansenula polymorpha DL-1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tripeptide glutathione (gamma-glutamyl-L-cysteinyl-glycine) is the most abundant non-protein thiol that protects cells from metabolic and oxidative stresses and is widely used as medicine, food additives and in cosmetic industry. The methylotrophic yeast <it>Hansenula polymorpha </it>is regarded as a rich source of glutathione due to the role of this thiol in detoxifications of key intermediates of methanol metabolism. Cellular and extracellular glutathione production of <it>H. polymorpha </it>DL-1 in the wild type and recombinant strains which overexpress genes of glutathione biosynthesis (<it>GSH2</it>) and its precursor cysteine (<it>MET4</it>) was studied.</p> <p>Results</p> <p>Glutathione producing capacity of <it>H. polymorpha </it>DL-1 depending on parameters of cultivation (dissolved oxygen tension, pH, stirrer speed), carbon substrate (glucose, methanol) and type of overexpressed genes of glutathione and its precursor biosynthesis during batch and fed-batch fermentations were studied. Under optimized conditions of glucose fed-batch cultivation, the glutathione productivity of the engineered strains was increased from ~900 up to ~ 2300 mg of Total Intracellular Glutathione (TIG) or GSH+GSSG<sub>in</sub>, per liter of culture medium. Meantime, methanol fed-batch cultivation of one of the recombinant strains allowed achieving the extracellular glutathione productivity up to 250 mg of Total Extracellular Glutathione (TEG) or GSH+GSSG<sub>ex</sub>, per liter of the culture medium.</p> <p>Conclusions</p> <p><it>H. polymorpha </it>is an competitive glutathione producer as compared to other known yeast and bacteria strains (<it>Saccharomyces cerevisiae, Candida utilis, Escherichia coli, Lactococcus lactis </it>etc.) with good perspectives for further improvement especially for production of extracellular form of glutathione.</p
    corecore