9 research outputs found

    Concerted Modification of Flowering Time and Inflorescence Architecture by Ectopic Expression of TFL1-Like Genes in Maize1[W][OA]

    No full text
    TERMINAL FLOWER1 (TFL1)-like genes are highly conserved in plants and are thought to function in the maintenance of meristem indeterminacy. Recently, we described six maize (Zea mays) TFL1-related genes, named ZEA CENTRORADIALIS1 (ZCN1) to ZCN6. To gain insight into their functions, we generated transgenic maize plants overexpressing their respective cDNAs driven by a constitutive promoter. Overall, ectopic expression of the maize TFL1-like genes produced similar phenotypes, including delayed flowering and altered inflorescence architecture. We observed an apparent relationship between the magnitude of the transgenic phenotypes and the degree of homology between the ZCN proteins. ZCN2, -4, and -5 form a monophylogenetic clade, and their overexpression produced the strongest phenotypes. Along with very late flowering, these transgenic plants produced a “bushy” tassel with increased lateral branching and spikelet density compared with nontransgenic siblings. On the other hand, ZCN1, -3, and -6 produced milder effects. Among them, ZCN1 showed moderate effects on flowering time and tassel morphology, whereas ZCN3 and ZCN6 did not change flowering time but still showed effects on tassel morphology. In situ hybridizations of tissue from nontransgenic plants revealed that the expression of all ZCN genes was associated with vascular bundles, but each gene had a specific spatial and temporal pattern. Expression of four ZCN genes localized to the protoxylem, whereas ZCN5 was expressed in the protophloem. Collectively, our findings suggest that ectopic expression of the TFL1-like genes in maize modifies flowering time and inflorescence architecture through maintenance of the indeterminacy of the vegetative and inflorescence meristems

    A Genomic and Expression Compendium of the Expanded PEBP Gene Family from Maize[W][OA]

    No full text
    The phosphatidylethanolamine-binding proteins (PEBPs) represent an ancient protein family found across the biosphere. In animals they are known to act as kinase and serine protease inhibitors controlling cell growth and differentiation. In plants the most extensively studied PEBP genes, the Arabidopsis (Arabidopsis thaliana) FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1) genes, function, respectively, as a promoter and a repressor of the floral transition. Twenty-five maize (Zea mays) genes that encode PEBP-like proteins, likely the entire gene family, were identified and named Zea mays CENTRORADIALIS (ZCN), after the first described plant PEBP gene from Antirrhinum. The maize family is expanded relative to eudicots (typically six to eight genes) and rice (Oryza sativa; 19 genes). Genomic structures, map locations, and syntenous relationships with rice were determined for 24 of the maize ZCN genes. Phylogenetic analysis assigned the maize ZCN proteins to three major subfamilies: TFL1-like (six members), MOTHER OF FT AND TFL1-like (three), and FT-like (15). Expression analysis demonstrated transcription for at least 21 ZCN genes, many with developmentally specific patterns and some having alternatively spliced transcripts. Expression patterns and protein structural analysis identified maize candidates likely having conserved gene function of TFL1. Expression patterns and interaction of the ZCN8 protein with the floral activator DLF1 in the yeast (Saccharomyces cerevisiae) two-hybrid assay strongly supports that ZCN8 plays an orthologous FT function in maize. The expression of other ZCN genes in roots, kernels, and flowers implies their involvement in diverse developmental processes

    Duplicated fie Genes in Maize: Expression Pattern and Imprinting Suggest Distinct Functions

    No full text
    Two maize genes with predicted translational similarity to the Arabidopsis FIE (Fertilization-Independent Endosperm) protein, a repressor of endosperm development in the absence of fertilization, were cloned and analyzed. Genomic sequences of fie1 and fie2 show significant homology within coding regions but none within introns or 5′ upstream. The fie1 gene is expressed exclusively in the endosperm of developing kernels starting at ∼6 days after pollination. fie1 is an imprinted gene showing no detectable expression of the paternally derived fie1 allele during kernel development. Conversely, fie2 is expressed in the embryo sac before pollination. After pollination, its expression persists, predominantly in the embryo and at lower levels in the endosperm. The paternal fie2 allele is not expressed early in kernel development, but its transcription is activated at 5 days after pollination. fie2 is likely to be a functional ortholog of the Arabidopsis FIE gene, whereas fie1 has evolved a distinct function. The maize FIE2 and sorghum FIE proteins form a monophyletic group, sharing a closer relationship to each other than to the FIE1 protein, suggesting that maize fie genes originated from two different ancestral genomes

    Involvement of the MADS-Box Gene ZMM4 in Floral Induction and Inflorescence Development in Maize1[W][OA]

    No full text
    The switch from vegetative to reproductive growth is marked by the termination of vegetative development and the adoption of floral identity by the shoot apical meristem (SAM). This process is called the floral transition. To elucidate the molecular determinants involved in this process, we performed genome-wide RNA expression profiling on maize (Zea mays) shoot apices at vegetative and early reproductive stages using massively parallel signature sequencing technology. Profiling revealed significant up-regulation of two maize MADS-box (ZMM) genes, ZMM4 and ZMM15, after the floral transition. ZMM4 and ZMM15 map to duplicated regions on chromosomes 1 and 5 and are linked to neighboring MADS-box genes ZMM24 and ZMM31, respectively. This gene order is syntenic with the vernalization1 locus responsible for floral induction in winter wheat (Triticum monococcum) and similar loci in other cereals. Analyses of temporal and spatial expression patterns indicated that the duplicated pairs ZMM4-ZMM24 and ZMM15-ZMM31 are coordinately activated after the floral transition in early developing inflorescences. More detailed analyses revealed ZMM4 expression initiates in leaf primordia of vegetative shoot apices and later increases within elongating meristems acquiring inflorescence identity. Expression analysis in late flowering mutants positioned all four genes downstream of the floral activators indeterminate1 (id1) and delayed flowering1 (dlf1). Overexpression of ZMM4 leads to early flowering in transgenic maize and suppresses the late flowering phenotype of both the id1 and dlf1 mutations. Our results suggest ZMM4 may play roles in both floral induction and inflorescence development

    Printed in Great Britain © The Company of Biologists Limited 2000

    No full text
    Evidence for the coincident initiation of homolog pairing and synapsis during the telomere-clustering (bouquet) stage of meiotic prophas
    corecore