10 research outputs found
A one health approach versus Acanthamoeba castellanii, a potential host for Morganella morganii
Acanthamoeba castellanii, known as the "Trojan horse of the microbial world," is known to host a variety of microorganisms including viruses, yeasts, protists, and bacteria. Acanthamoeba can act as a vector and may aid in the transmission of various bacterial pathogens to potential hosts and are found in a variety of places, thus impacting the health of humans, animals, and the environment. These are interconnected in a system known as "one health." With the global threat of antibiotic resistance, bacteria may avoid harsh conditions, antibiotics, and disinfectants by sheltering within Acanthamoeba. In this study, Acanthamoeba castellanii interaction with Morganella morganii, a Gram-negative bacterium was studied. Escherichia coli K1 interaction with Acanthamoeba was carried out as a control. Association, invasion, and survival assays were accomplished. Morganella morganii was found to associate, invade, and survive within Acanthamoeba castellanii. Additionally, Escherichia coli K1 was also found to associate, invade, and survive within the Acanthamoeba at a higher number in comparison to Morganella morganii. For the first time, we have shown that Morganella morganii interact, invade, and survive within Acanthamoeba castellanii, suggesting that Acanthamoeba may be a potential vector in the transmission of Morganella morganii to susceptible hosts. Taking a one health approach to tackle and develop disinfectants to target Acanthamoeba is warranted, as the amoebae may be hosting various microbes such as multiple drug-resistant bacteria and even viruses such as the novel coronavirus.</p
A one health approach versus Acanthamoeba castellanii, a potential host for Morganella morganii
Acanthamoeba castellanii, known as the "Trojan horse of the microbial world," is known to host a variety of microorganisms including viruses, yeasts, protists, and bacteria. Acanthamoeba can act as a vector and may aid in the transmission of various bacterial pathogens to potential hosts and are found in a variety of places, thus impacting the health of humans, animals, and the environment. These are interconnected in a system known as "one health." With the global threat of antibiotic resistance, bacteria may avoid harsh conditions, antibiotics, and disinfectants by sheltering within Acanthamoeba. In this study, Acanthamoeba castellanii interaction with Morganella morganii, a Gram-negative bacterium was studied. Escherichia coli K1 interaction with Acanthamoeba was carried out as a control. Association, invasion, and survival assays were accomplished. Morganella morganii was found to associate, invade, and survive within Acanthamoeba castellanii. Additionally, Escherichia coli K1 was also found to associate, invade, and survive within the Acanthamoeba at a higher number in comparison to Morganella morganii. For the first time, we have shown that Morganella morganii interact, invade, and survive within Acanthamoeba castellanii, suggesting that Acanthamoeba may be a potential vector in the transmission of Morganella morganii to susceptible hosts. Taking a one health approach to tackle and develop disinfectants to target Acanthamoeba is warranted, as the amoebae may be hosting various microbes such as multiple drug-resistant bacteria and even viruses such as the novel coronavirus.</p
The Pivotal Role of the Gut Microbiome in Colorectal Cancer
Colorectal cancer is the third most diagnosed cancer worldwide and the second most prevalent cause of cancer-related mortality. It is believed that alterations within the gut microbiome may impact the development and progression of cancer. Additionally, the diet an individual maintains and the amount of alcohol consumed can alter the microbiome, thus impacting the development of colorectal cancer. A diet focused on fiber intake is considered beneficial, as it contains short-chain fatty acids such as butyrate, which have antitumor properties. Furthermore, current treatment strategies, such as chemotherapy, have various side effects. In this review, we discuss the role of the gut microbiome and oral bacteria in relation to colorectal cancer. We also deliberate on the role of diet and alcohol consumption in the development of colorectal cancer. Moreover, the influence of the various metabolites within the gut and the importance of gut inflammation in the development of colorectal cancer are explained. Finally, potential therapies such as fecal microbiota transfer and post/prebiotics are elaborated on. To further comprehend risk factors in the development of colorectal cancer, future studies are warranted to determine the precise mechanisms of action between the gut microbiome and carcinogenesis in order to develop therapies that may target gut microbial dysbiosis
The increasing importance of the oral microbiome in periodontal health and disease
Herein, the aim is to discuss the current knowledge of microbiome and periodontal diseases. Current treatment strategies include mechanical therapy such as root planing, scaling, deep pocket debridement and antimicrobial chemotherapy as an adjuvant therapy. Among promising therapeutic strategies, dental probiotics and oral microbiome transplantation have gained attention, and may be used to treat bacterial imbalances by competing with pathogenic bacteria for nutrients and adhesion surfaces, as well as probiotics targeting the gut microbiome. Development of strategies to prevent and treat periodontal diseases are warranted as both are highly prevalent and can affect human health. Further studies are necessary to better comprehend the microbiome in order to develop innovative preventative measures as well as efficacious therapies against periodontal diseases
Antiamoebic Properties of Metabolites against Naegleria fowleri and Balamuthia mandrillaris
Naegleria fowleri and Balamuthia mandrillaris are free-living, opportunistic protists, distributed widely in the environment. They are responsible for primary amoebic meningoencephalitis (PAM) and granulomatous amoebic encephalitis (GAE), the fatal central nervous infections with mortality rates exceeding 90%. With the rise of global warming and water shortages resulting in water storage in tanks (where these amoebae may reside), the risk of infection is increasing. Currently, as a result of a lack of awareness, many cases may be misdiagnosed. Furthermore, the high mortality rate indicates the lack of effective drugs available. In this study, secondary metabolites from the plants Rinorea vaundensis and Salvia triloba were tested for their anti-amoebic properties against N. fowleri and B. mandrillaris. Three of the nine compounds showed potent and significant anti-amoebic activities against both N. fowleri and B. mandrillaris: ursolic acid, betulinic acid, and betulin. Additionally, all compounds depicted limited or minimal toxicity to human cells and were capable of reducing amoeba-mediated host cell death. Moreover, the minimum inhibitory concentration required to inhibit 50% of amoebae growth, the half-maximal effective concentration, and the maximum non-toxic dose against human cells of the compounds were determined. These effective plant-derived compounds should be utilized as potential therapies against infections due to free-living amoebae, but future research is needed to realize these expectations
Anti-Balamuthia mandrillaris and anti-Naegleria fowleri effects of drugs conjugated with various nanostructures
Balamuthia mandrillaris and Naegleria fowleri are protist pathogens that can cause fatal infections. Despite mortality rate of > 90%, there is no effective therapy. Treatment remains problematic involving repurposed drugs, e.g., azoles, amphotericin B and miltefosine but requires early diagnosis. In addition to drug discovery, modifying existing drugs using nanotechnology offers promise in the development of therapeutic interventions against these parasitic infections. Herein, various drugs conjugated with nanoparticles were developed and evaluated for their antiprotozoal activities. Characterizations of the drugs' formulations were accomplished utilizing Fourier-transform infrared spectroscopy, efficiency of drug entrapment, polydispersity index, zeta potential, size, and surface morphology. The nanoconjugates were tested against human cells to determine their toxicity in vitro. The majority of drug nanoconjugates exhibited amoebicidal effects against B. mandrillaris and N. fowleri. Amphotericin B-, Sulfamethoxazole-, Metronidazole-based nanoconjugates are of interest since they exhibited significant amoebicidal effects against both parasites (p < 0.05). Furthermore, Sulfamethoxazole and Naproxen significantly diminished host cell death caused by B. mandrillaris by up to 70% (p < 0.05), while Amphotericin B-, Sulfamethoxazole-, Metronidazole-based drug nanoconjugates showed the highest reduction in host cell death caused by N. fowleri by up to 80%. When tested alone, all of the drug nanoconjugates tested in this study showed limited toxic effects against human cells in vitro (less than 20%). Although these are promising findings, prospective work is warranted to comprehend the mechanistic details of nanoconjugates versus amoebae as well as their in vivo testing, to develop antimicrobials against the devastating infections caused by these parasites.</p
Zinc Oxide Nanoconjugates against Brain-Eating Amoebae
Naegleria fowleri and Balamuthia mandrillaris are opportunistic protists, responsible for fatal central nervous system infections such as primary amoebic meningoencephalitis (PAM) and granulomatous amoebic encephalitis (GAE) with mortality rates higher than 90%. Threatening a rise in cases is the increase in temperature due to global warming. No effective treatment is currently available. Herein, nanotechnology was used to conjugate Zinc oxide with Ampicillin, Ceftrixon, Naringin, Amphotericin B, and Quericitin, and the amoebicidal activity and host cell cytotoxicity of these resulting compounds were investigated. The compounds ZnO-CD-AMPi, ZnO-CD-CFT, ZnO-CD-Nar, ZnO-CD-AMB, and ZnO-CD-QT were found to reduce N. fowleri viability to 35.5%, 39.6%, 52.0%, 50.8%, 35.9%, and 69.9%, respectively, and B. mandrillaris viability to 40.9%, 48.2%, 51.6%, 43.8%, and 62.4%, respectively, when compared with their corresponding controls. Furthermore, the compounds reduced N. fowleri-mediated and B. mandrillaris-mediated host cell death significantly. Additionally, the compounds showed limited cytotoxicity against human cells; cell toxicity was 35.5%, 36.4%, 30.9%, 36.6%, and 35.6%, respectively, for the compounds ZnO-CD-AMPi, ZnO-CD-CFT, ZnO-CD-Nar, ZnO-CD-AMB, and ZnO-CD-QT. Furthermore, the minimum inhibitory concentrations to inhibit amoeba growth by 50% were determined for N. fowleri and B. mandrillaris. The MIC50 for N. fowleri were determined to be 69.52 µg/mL, 82.05 µg/mL, 88.16 µg/mL, 95.61 µg/mL, and 85.69 µg/mL, respectively; the MIC50 of the compounds for B. mandrillaris were determined to be 113.9 µg/mL, 102.3 µg/mL, 106.9 µg/mL, 146.4 µg/mL, and 129.6 µg/mL, respectively. Translational research to further develop therapies based on these compounds is urgently warranted, given the lack of effective therapies currently available against these devastating infections
Nanocarrier Drug Conjugates Exhibit Potent Anti-<i>Naegleria fowleri</i> and Anti-<i>Balamuthia mandrillaris</i> Properties
Given the opportunity and access, pathogenic protists (Balamuthia mandrillaris and Naegleria fowleri) can produce fatal infections involving the central nervous system. In the absence of effective treatments, there is a need to either develop new antimicrobials or enhance the efficacy of existing compounds. Nanocarriers as drug delivery systems are gaining increasing attention in the treatment of parasitic infections. In this study, novel nanocarriers conjugated with amphotericin B and curcumin were evaluated for anti-amoebic efficacy against B. mandrillaris and N. fowleri. The results showed that nanocarrier conjugated amphotericin B exhibited enhanced cidal properties against both amoebae tested compared with the drug alone. Similarly, nanocarrier conjugated curcumin exhibited up to 75% cidal effects versus approx. 50% cidal effects for curcumin alone. Cytopathogenicity assays revealed that the pre-treatment of both parasites with nanoformulated-drugs reduced parasite-mediated host cellular death compared with the drugs alone. Importantly, the cytotoxic effects of amphotericin B on human cells alone were reduced when conjugated with nanocarriers. These are promising findings and further suggest the need to explore nanocarriers as a means to deliver medicine against parasitic infections
Synthesis and Evaluation of Novel DNA Minor Groove Binders as Antiamoebic Agents
The free-living amoeba Acanthamoeba castellanii is responsible for the central nervous infection granulomatous amoebic encephalitis and sight-threatening infection Acanthamoeba keratitis. Moreover, no effective treatment is currently present, and a combination drug therapy is used. In this study, twelve DNA minor groove binders (MGBs) were synthesized and tested for their antiamoebic activity via amoebicidal, encystation, excystation, and cytopathogenicity assays. It was found that the compounds MGB3, MGB6, MGB22, MGB24, and MGB16 significantly reduce amoeba viability to 76.20%, 59.45%, 66.5%, 39.32%, and 43.21%, respectively, in amoebicidal assays. Moreover, the compounds MGB6, MGB20, MGB22, MGB28, MGB30, MGB32, and MGB16 significantly inhibit Acanthamoeba cysts, leading to the development of only 46.3%, 39%, 30.3%, 29.6%, 27.8%, 41.5%, and 45.6% cysts. Additionally, the compounds MGB3, MGB4, MGB6, MGB22, MGB24, MGB28, MGB32, and MGB16 significantly reduce the re-emergence of cysts to trophozoites, with viable trophozoites being only 64.3%, 47.3%, 41.4%, 52.9%, 55.4%, 40.6%, 62.1%, and 51.7%. Moreover, the compounds MGB3, MGB4, and MGB6 exhibited the greatest reduction in amoeba-mediated host-cell death, with cell death reduced to 41.5%, 49.4%, and 49.5%. With the following determined, future in vivo studies can be carried out to understand the effect of the compounds on animal models such as mice
Imidazothiazole Derivatives Exhibited Potent Effects against Brain-Eating Amoebae
Naegleria fowleri (N. fowleri) is a free-living, unicellular, opportunistic protist responsible for the fatal central nervous system infection, primary amoebic meningoencephalitis (PAM). Given the increase in temperatures due to global warming and climate change, it is estimated that the cases of PAM are on the rise. However, there is a current lack of awareness and effective drugs, meaning there is an urgent need to develop new therapeutic drugs. In this study, the target compounds were synthesized and tested for their anti-amoebic properties against N. fowleri. Most compounds exhibited significant amoebicidal effects against N. fowleri; for example, 1h, 1j, and 1q reduced N. fowleri’s viability to 15.14%, 17.45% and 28.78%, respectively. Furthermore, the majority of the compounds showed reductions in amoeba-mediated host death. Of interest are the compounds 1f, 1k, and 1v, as they were capable of reducing the amoeba-mediated host cell death to 52.3%, 51%, and 56.9% from 100%, respectively. Additionally, these compounds exhibit amoebicidal properties as well; they were found to decrease N. fowleri’s viability to 26.41%, 27.39%, and 24.13% from 100%, respectively. Moreover, the MIC50 values for 1e, 1f, and 1h were determined to be 48.45 µM, 60.87 µM, and 50.96 µM, respectively. Additionally, the majority of compounds were found to exhibit limited cytotoxicity, except for 1l, 1o, 1p, 1m, 1c, 1b, 1zb, 1z, 1y, and 1x, which exhibited negligible toxicity. It is anticipated that these compounds may be developed further as effective treatments against these devastating infections due to brain-eating amoebae