26 research outputs found

    Optimal Caching and Routing in Hybrid Networks

    Full text link
    Hybrid networks consisting of MANET nodes and cellular infrastructure have been recently proposed to improve the performance of military networks. Prior work has demonstrated the benefits of in-network content caching in a wired, Internet context. We investigate the problem of developing optimal routing and caching policies in a hybrid network supporting in-network caching with the goal of minimizing overall content-access delay. Here, needed content may always be accessed at a back-end server via the cellular infrastructure; alternatively, content may also be accessed via cache-equipped "cluster" nodes within the MANET. To access content, MANET nodes must thus decide whether to route to in-MANET cluster nodes or to back-end servers via the cellular infrastructure; the in-MANET cluster nodes must additionally decide which content to cache. We model the cellular path as either i) a congestion-insensitive fixed-delay path or ii) a congestion-sensitive path modeled as an M/M/1 queue. We demonstrate that under the assumption of stationary, independent requests, it is optimal to adopt static caching (i.e., to keep a cache's content fixed over time) based on content popularity. We also show that it is optimal to route to in-MANET caches for content cached there, but to route requests for remaining content via the cellular infrastructure for the congestion-insensitive case and to split traffic between the in-MANET caches and cellular infrastructure for the congestion-sensitive case. We develop a simple distributed algorithm for the joint routing/caching problem and demonstrate its efficacy via simulation.Comment: submitted to Milcom 201

    Congestion-aware caching and search in information-centric Networks

    Get PDF
    ABSTRACT The performance of in-network caching in informationcentric networks, and of cache networks more generally, is typically characterized by network-centric performance metrics such as hit rate and hop count, with approaches to locating and caching content evaluated and optimized for these metrics. We believe that user-centric performance metrics, in particular the delay from when a content request is made by the user to the time at which the requested content has been completely downloaded, are also important. For such metrics, performance is often determined by link capacity constraints and network congestion. We investigate network cache management and search policies that account for path-level (content-server to content-requestor) congestion and file popularity in order to directly minimize user-centric, content-download delay. Through simulation, we find that our policies yield significantly better download delay performance than existing policies, even though these existing policies provide better performance according to traditional metrics such as cache hit rate and hop count

    HER2-enriched subtype and novel molecular subgroups drive aromatase inhibitor resistance and an increased risk of relapse in early ER+/HER2+ breast cancer

    Get PDF
    BACKGROUND: Oestrogen receptor positive/ human epidermal growth factor receptor positive (ER+/HER2+) breast cancers (BCs) are less responsive to endocrine therapy than ER+/HER2- tumours. Mechanisms underpinning the differential behaviour of ER+HER2+ tumours are poorly characterised. Our aim was to identify biomarkers of response to 2 weeks’ presurgical AI treatment in ER+/HER2+ BCs. METHODS: All available ER+/HER2+ BC baseline tumours (n=342) in the POETIC trial were gene expression profiled using BC360™ (NanoString) covering intrinsic subtypes and 46 key biological signatures. Early response to AI was assessed by changes in Ki67 expression and residual Ki67 at 2 weeks (Ki672wk). Time-To-Recurrence (TTR) was estimated using Kaplan-Meier methods and Cox models adjusted for standard clinicopathological variables. New molecular subgroups (MS) were identified using consensus clustering. FINDINGS: HER2-enriched (HER2-E) subtype BCs (44.7% of the total) showed poorer Ki67 response and higher Ki672wk (p<0.0001) than non-HER2-E BCs. High expression of ERBB2 expression, homologous recombination deficiency (HRD) and TP53 mutational score were associated with poor response and immune-related signatures with High Ki672wk. Five new MS that were associated with differential response to AI were identified. HER2-E had significantly poorer TTR compared to Luminal BCs (HR 2.55, 95% CI 1.14–5.69; p=0.0222). The new MS were independent predictors of TTR, adding significant value beyond intrinsic subtypes. INTERPRETATION: Our results show HER2-E as a standardised biomarker associated with poor response to AI and worse outcome in ER+/HER2+. HRD, TP53 mutational score and immune-tumour tolerance are predictive biomarkers for poor response to AI. Lastly, novel MS identify additional non-HER2-E tumours not responding to AI with an increased risk of relapse

    On Caching and Routing in Information-Centric Networks

    No full text

    Climate change and living cities: Global problems with local solutions

    No full text
    10.1007/978-90-481-9867-2_2Climate Change and Sustainable Urban Development in Africa and Asia21-3

    On the scalability and effectiveness of a cache pollution based DoS attack in information centric networks

    No full text
    With the exponential growth of content, the Internet is undergoing a transformation from a host-centric approach to a content-centric one, popularly known as an Information Centric Networks (ICN). ICN aims to improve user performance by incorporating in-network caching at storage enabled nodes. In this paper, we explore the scalability and effectiveness of a targeted denial of service attack (DoS) designed for ICN [1]. In this attack, malicious nodes periodically request unpopular content, thereby replacing popular content in the caches enroute to the custodian with unpopular ones. The intuition behind this attack is that legitimate requests for the evicted content cannot be served from enroute caches and have to be forwarded towards the custodian, thus degrading user performance. Our goal in this paper is not to propose a sophisticated attack, but to investigate the scalability and potency of this brute force attack in ICN. By performing exhaustive and rigorous experimentation on realistic Internet topologies, and by exploring a wide range of simulation parameters we observe the following: (i) this attack is moderately successful in small scale networks comprising of less than 100 nodes, (ii) the potency of the attack rapidly decreases, and becomes ineffective as the network size increases to few thousand nodes, and (iii) the attack is more effective against a FIFO caching policy in comparison to LRU. Our results demonstrate that if the entire Internet or large MANETs are transformed into an ICN, this attack is likely to be unsuccessful
    corecore