424 research outputs found

    Cytokines induce effector T-helper cells during invasive aspergillosis; what we have learned about T-helper cells?

    Get PDF
    Invasive aspergillosis caused by Aspergillus species (Aspergillus fumigatus, A. flavus and A. terreus) is life-threatening infections in immunocompromised patients. Understanding the innate and adaptive immune response particularly T-helper cells (TH-cells) against these Aspergillus species and how the different sub-set of TH-cells are regulated by differentiating cytokines at primary target organ site like lung, kidney and brain is of great significance to human health. This review focuses on presentation of Aspergillus through Antigen presenting cells (APCs) to the naive CD4+ T-cells in the host. The production of differentiating/effector cytokines that activate following TH-cells e.g., TH1, TH2, TH9 and TH17 has been reported in association or alone in allergic or invasive aspergillosis. Chemokines (CXCL1, CXCL2, CCL1 and CCL20) and their receptors associated to these TH-cells have also been observed in invasive aspergillosis. Thus, further study of these TH-cells in invasive aspergillosis and other elements of adaptive immune response with Aspergillus species are required in order to have a better understanding of host response for safer and effective therapeutic outcome

    Genetic Evidence for Modifying Oceanic Boundaries Relative to Fiji

    Get PDF
    We present the most comprehensive genetic characterization to date of five Fijian island populations: Viti Levu, Vanua Levu, Kadavu, the Lau Islands, and Rotuma, including non-recombinant Y (NRY) chromosome and mitochondrial DNA (mtDNA) haplotypes and haplogroups. As a whole, Fijians are genetically intermediate between Melanesians and Polynesians, but the individual Fijian island populations exhibit significant genetic structure reflecting different settlement experiences in which the Rotumans and the Lau Islanders were more influenced by Polynesians, and the other Fijian island populations were more influenced by Melanesians. In particular, Rotuman and Lau Islander NRY chromosomal and mtDNA haplogroup frequencies and Rotuman mtDNA hypervariable segment 1 (HVS1) region haplotypes more closely resemble those of Polynesians, while genetic markers of the other populations more closely resemble those of the Near Oceanic Melanesians. Our findings provide genetic evidence supportive of modifying regional boundaries relative to Fiji, as has been suggested by others based on a variety of non-genetic evidence. Specifically, for the traditional Melanesia/Polynesia/Micronesia scheme, our findings support moving the Melanesia-Polynesia boundary so as to include Rotuma and the Lau Islands in Polynesia. For the newer Near/Remote Oceania scheme, our findings support keeping Rotuma and the Lau Islands in Remote Oceania and locating the other Fijian island populations in an intermediate or “Central Oceania” region to better reflect the great diversity of Oceania

    All-sky, all-frequency directional search for persistent gravitational waves from Advanced LIGO’s and Advanced Virgo’s first three observing runs

    Full text link
    We present the first results from an all-sky all-frequency (ASAF) search for an anisotropic stochastic gravitational-wave background using the data from the first three observing runs of the Advanced LIGO and Advanced Virgo detectors. Upper limit maps on broadband anisotropies of a persistent stochastic background were published for all observing runs of the LIGO-Virgo detectors. However, a broadband analysis is likely to miss narrowband signals as the signal-to-noise ratio of a narrowband signal can be significantly reduced when combined with detector output from other frequencies. Data folding and the computationally efficient analysis pipeline, PyStoch, enable us to perform the radiometer map-making at every frequency bin. We perform the search at 3072 HEALPix equal area pixels uniformly tiling the sky and in every frequency bin of width 1/32  Hz in the range 20–1726 Hz, except for bins that are likely to contain instrumental artefacts and hence are notched. We do not find any statistically significant evidence for the existence of narrowband gravitational-wave signals in the analyzed frequency bins. Therefore, we place 95% confidence upper limits on the gravitational-wave strain for each pixel-frequency pair, the limits are in the range (0.030−9.6)×10−24. In addition, we outline a method to identify candidate pixel-frequency pairs that could be followed up by a more sensitive (and potentially computationally expensive) search, e.g., a matched-filtering-based analysis, to look for fainter nearly monochromatic coherent signals. The ASAF analysis is inherently independent of models describing any spectral or spatial distribution of power. We demonstrate that the ASAF results can be appropriately combined over frequencies and sky directions to successfully recover the broadband directional and isotropic results

    Search for Subsolar-Mass Binaries in the First Half of Advanced LIGO’s and Advanced Virgo’s Third Observing Run

    Full text link
    We report on a search for compact binary coalescences where at least one binary component has a mass between 0.2 M⊙ and 1.0 M⊙ in Advanced LIGO and Advanced Virgo data collected between 1 April 2019 1500 UTC and 1 October 2019 1500 UTC. We extend our previous analyses in two main ways: we include data from the Virgo detector and we allow for more unequal mass systems, with mass ratio q ≄ 0.1. We do not report any gravitational-wave candidates. The most significant trigger has a false alarm rate of 0.14 yr−1. This implies an upper limit on the merger rate of subsolar binaries in the range Âœ220 − 24200ïżœ Gpc−3 yr−1, depending on the chirp mass of the binary. We use this upper limit to derive astrophysical constraints on two phenomenological models that could produce subsolar-mass compact objects. One is an isotropic distribution of equal-mass primordial black holes. Using this model, we find that the fraction of dark matter in primordial black holes in the mass range 0.2 M⊙ < mPBH < 1.0 M⊙ is fPBH ≡ ΩPBH=ΩDM â‰Č 6%. This improves existing constraints on primordial black hole abundance by a factor of ∌3. The other is a dissipative dark matter model, in which fermionic dark matter can collapse and form black holes. The upper limit on the fraction of dark matter black holes depends on the minimum mass of the black holes that can be formed: the most constraining result is obtained at Mmin ÂŒ 1 M⊙, where fDBH ≡ ΩDBH=ΩDM â‰Č 0.003%. These are the first constraints placed on dissipative dark models by subsolar-mass analyses

    Narrowband Searches for Continuous and Long-duration Transient Gravitational Waves from Known Pulsars in the LIGO-Virgo Third Observing Run

    Full text link
    Isolated neutron stars that are asymmetric with respect to their spin axis are possible sources of detectable continuous gravitational waves. This paper presents a fully coherent search for such signals from eighteen pulsars in data from LIGO and Virgo’s third observing run (O3). For known pulsars, efficient and sensitive matched-filter searches can be carried out if one assumes the gravitational radiation is phase-locked to the electromagnetic emission. In the search presented here, we relax this assumption and allow both the frequency and the time derivative of the frequency of the gravitational waves to vary in a small range around those inferred from electromagnetic observations. We find no evidence for continuous gravitational waves, and set upper limits on the strain amplitude for each target. These limits are more constraining for seven of the targets than the spin-down limit defined by ascribing all rotational energy loss to gravitational radiation. In an additional search, we look in O3 data for long-duration (hours–months) transient gravitational waves in the aftermath of pulsar glitches for six targets with a total of nine glitches. We report two marginal outliers from this search, but find no clear evidence for such emission either. The resulting duration-dependent strain upper limits do not surpass indirect energy constraints for any of these targets

    All-sky search for gravitational wave emission from scalar boson clouds around spinning black holes in LIGO O3 data

    Full text link
    This paper describes the first all-sky search for long-duration, quasimonochromatic gravitational-wave signals emitted by ultralight scalar boson clouds around spinning black holes using data from the third observing run of Advanced LIGO. We analyze the frequency range from 20 to 610 Hz, over a small frequency derivative range around zero, and use multiple frequency resolutions to be robust towards possible signal frequency wanderings. Outliers from this search are followed up using two different methods, one more suitable for nearly monochromatic signals, and the other more robust towards frequency fluctuations. We do not find any evidence for such signals and set upper limits on the signal strain amplitude, the most stringent being ≈10−25 at around 130 Hz. We interpret these upper limits as both an “exclusion region” in the boson mass/black hole mass plane and the maximum detectable distance for a given boson mass, based on an assumption of the age of the black hole/boson cloud system

    Searches for Gravitational Waves from Known Pulsars at Two Harmonics in the Second and Third LIGO-Virgo Observing Runs

    Full text link
    We present a targeted search for continuous gravitational waves (GWs) from 236 pulsars using data from the third observing run of LIGO and Virgo (O3) combined with data from the second observing run (O2). Searches were for emission from the l = m = 2 mass quadrupole mode with a frequency at only twice the pulsar rotation frequency (single harmonic) and the l = 2, m = 1, 2 modes with a frequency of both once and twice the rotation frequency (dual harmonic). No evidence of GWs was found, so we present 95% credible upper limits on the strain amplitudes h 0_{0} for the single-harmonic search along with limits on the pulsars’ mass quadrupole moments Q 22_{22} and ellipticities Δ. Of the pulsars studied, 23 have strain amplitudes that are lower than the limits calculated from their electromagnetically measured spin-down rates. These pulsars include the millisecond pulsars J0437−4715 and J0711−6830, which have spin-down ratios of 0.87 and 0.57, respectively. For nine pulsars, their spin-down limits have been surpassed for the first time. For the Crab and Vela pulsars, our limits are factors of ∌100 and ∌20 more constraining than their spin-down limits, respectively. For the dual-harmonic searches, new limits are placed on the strain amplitudes C 21_{21} and C 22_{22}. For 23 pulsars, we also present limits on the emission amplitude assuming dipole radiation as predicted by Brans-Dicke theory

    Search for continuous gravitational waves from 20 accreting millisecond x-ray pulsars in O3 LIGO data

    Full text link
    Results are presented of searches for continuous gravitational waves from 20 accreting millisecond x-ray pulsars with accurately measured spin frequencies and orbital parameters, using data from the third observing run of the Advanced LIGO and Advanced Virgo detectors. The search algorithm uses a hidden Markov model, where the transition probabilities allow the frequency to wander according to an unbiased random walk, while the J-statistic maximum-likelihood matched filter tracks the binary orbital phase. Three narrow subbands are searched for each target, centered on harmonics of the measured spin frequency. The search yields 16 candidates, consistent with a false alarm probability of 30% per subband and target searched. These candidates, along with one candidate from an additional target-of-opportunity search done for SAX J1808.4−3658, which was in outburst during one month of the observing run, cannot be confidently associated with a known noise source. Additional follow-up does not provide convincing evidence that any are a true astrophysical signal. When all candidates are assumed nonastrophysical, upper limits are set on the maximum wave strain detectable at 95% confidence, h95%0. The strictest constraint is h95%0=4.7×10−26 from IGR J17062−6143. Constraints on the detectable wave strain from each target lead to constraints on neutron star ellipticity and r-mode amplitude, the strictest of which are Δ95%=3.1×10−7 and α95%=1.8×10−5 respectively. This analysis is the most comprehensive and sensitive search of continuous gravitational waves from accreting millisecond x-ray pulsars to date

    Model-based Cross-correlation Search for Gravitational Waves from the Low-mass X-Ray Binary Scorpius X-1 in LIGO O3 Data

    Full text link
    We present the results of a model-based search for continuous gravitational waves from the low-mass X-ray binary Scorpius X-1 using LIGO detector data from the third observing run of Advanced LIGO and Advanced Virgo. This is a semicoherent search that uses details of the signal model to coherently combine data separated by less than a specified coherence time, which can be adjusted to balance sensitivity with computing cost. The search covered a range of gravitational-wave frequencies from 25 to 1600 Hz, as well as ranges in orbital speed, frequency, and phase determined from observational constraints. No significant detection candidates were found, and upper limits were set as a function of frequency. The most stringent limits, between 100 and 200 Hz, correspond to an amplitude h 0_{0} of about 10−25^{−25} when marginalized isotropically over the unknown inclination angle of the neutron star’s rotation axis, or less than 4 × 10−26^{−26} assuming the optimal orientation. The sensitivity of this search is now probing amplitudes predicted by models of torque balance equilibrium. For the usual conservative model assuming accretion at the surface of the neutron star, our isotropically marginalized upper limits are close to the predicted amplitude from about 70 to 100 Hz; the limits assuming that the neutron star spin is aligned with the most likely orbital angular momentum are below the conservative torque balance predictions from 40 to 200 Hz. Assuming a broader range of accretion models, our direct limits on gravitational-wave amplitude delve into the relevant parameter space over a wide range of frequencies, to 500 Hz or more
    • 

    corecore