33 research outputs found

    Curcumin-Loaded Apotransferrin Nanoparticles Provide Efficient Cellular Uptake and Effectively Inhibit HIV-1 Replication In Vitro

    Get PDF
    Curcumin (diferuloylmethane) shows significant activity across a wide spectrum of conditions, but its usefulness is rather limited because of its low bioavailability. Use of nanoparticle formulations to enhance curcumin bioavailability is an emerging area of research.In the present study, curcumin-loaded apotransferrin nanoparticles (nano-curcumin) prepared by sol-oil chemistry and were characterized by electron and atomic force microscopy. Confocal studies and fluorimetric analysis revealed that these particles enter T cells through transferrin-mediated endocytosis. Nano-curcumin releases significant quantities of drug gradually over a fairly long period, ∼50% of curcumin still remaining at 6 h of time. In contrast, intracellular soluble curcumin (sol-curcumin) reaches a maximum at 2 h followed by its complete elimination by 4 h. While sol-curcumin (GI(50) = 15.6 µM) is twice more toxic than nano-curcumin (GI(50) = 32.5 µM), nano-curcumin (IC(50)<1.75 µM) shows a higher anti-HIV activity compared to sol-curcumin (IC(50) = 5.1 µM). Studies in vitro showed that nano-curcumin prominently inhibited the HIV-1 induced expression of Topo II α, IL-1β and COX-2, an effect not seen with sol-curcumin. Nano-curcumin did not affect the expression of Topoisomerase II β and TNF α. This point out that nano-curcumin affects the HIV-1 induced inflammatory responses through pathways downstream or independent of TNF α. Furthermore, nano-curcumin completely blocks the synthesis of viral cDNA in the gag region suggesting that the nano-curcumin mediated inhibition of HIV-1 replication is targeted to viral cDNA synthesis.Curcumin-loaded apotransferrin nanoparticles are highly efficacious inhibitors of HIV-1 replication in vitro and promise a high potential for clinical usefulness

    An Efficient Targeted Drug Delivery through Apotransferrin Loaded Nanoparticles

    Get PDF
    BACKGROUND: Cancerous state is a highly stimulated environment of metabolically active cells. The cells under these conditions over express selective receptors for assimilation of factors essential for growth and transformation. Such receptors would serve as potential targets for the specific ligand mediated transport of pharmaceutically active molecules. The present study demonstrates the specificity and efficacy of protein nanoparticle of apotransferrin for targeted delivery of doxorubicin. METHODOLOGY/PRINCIPAL FINDINGS: Apotransferrin nanoparticles were developed by sol-oil chemistry. A comparative analysis of efficiency of drug delivery in conjugated and non-conjugated forms of doxorubicin to apotransferrin nanoparticle is presented. The spherical shaped apotransferrin nanoparticles (nano) have diameters of 25-50 etam, which increase to 60-80 etam upon direct loading of drug (direct-nano), and showed further increase in dimension (75-95 etam) in conjugated nanoparticles (conj-nano). The competitive experiments with the transferrin receptor specific antibody showed the entry of both conj-nano and direct-nano into the cells through transferrin receptor mediated endocytosis. Results of various studies conducted clearly establish the superiority of the direct-nano over conj-nano viz. (a) localization studies showed complete release of drug very early, even as early as 30 min after treatment, with the drug localizing in the target organelle (nucleus) (b) pharmacokinetic studies showed enhanced drug concentrations, in circulation with sustainable half-life (c) the studies also demonstrated efficient drug delivery, and an enhanced inhibition of proliferation in cancer cells. Tissue distribution analysis showed intravenous administration of direct nano lead to higher drug localization in liver, and blood as compared to relatively lesser localization in heart, kidney and spleen. Experiments using rat cancer model confirmed the efficacy of the formulation in regression of hepatocellular carcinoma with negligible toxicity to kidney and liver. CONCLUSIONS: The present study thus demonstrates that the direct-nano is highly efficacious in delivery of drug in a target specific manner with lower toxicity to heart, liver and kidney

    CARMUSTINE LOADED LACTOFERRIN NANOPARTICLES DEMONSTRATES AN ENHANCED ANTIPROLIFERATIVE ACTIVITY AGAINST GLIOBLASTOMA IN VITRO

    Get PDF
    Objective: Despite sophisticated treatment regimens, there is no significant improvement in the mortality rates of glioblastoma due to insufficient dosage delivery, reoccurrence of tumors, higher systemic toxicity, etc. Since brain endothelial cells and glioblastoma cells express lactoferrin receptors, a target-specific drug delivery vehicle was developed using lactoferrin itself as a matrix, into which carmustine was loaded. The objective was to use carmustine loaded lactoferrin nanoparticles (CLN) to achieve higher therapeutic efficacy and target specificity compared to free carmustine.Methods: CLN were prepared using the Sol-oil method. The nanoparticles prepared were characterized for their size, shape, polydispersity, and stability using FESEM and DLS methods. Drug loading and drug releasing efficiencies were also estimated. Further, cellular uptake of nanoparticles and their antiproliferative efficacy against glioblastoma cells were evaluated.Results: Characterization of CLN showed that they were spherical with ≤ 41 nm diameter and exhibited homogeneously dispersed stable distribution. Loading efficiency of carmustine in CLN was estimated to be 43±3.7 %. Drug release from the nanoparticles was pH dependent with the maximum observed at pH 5. At physiological and gastric pH, drug release was lower, whereas maximum release was observed at endocytotic vesicular and around tumor extracellular pH. Confocal microscopic studies showed an active cellular uptake of nanoparticles. Results of antiproliferative analysis substantiated a higher antiproliferative effect for CLN compared to free carmustine.Conclusion: The results of the study demonstrated that CLN serves as a vital tool, in designing an effective treatment strategy for targeted drug delivery to glioblastoma

    Abstract A36: Doxorubicin loaded lactoferrin nanoparticles: Treatment of hepatocellular carcinoma in rats induced by diethylnitrosamine

    Full text link
    Abstract Hepatocellular carcinoma (HCC) is a highly incident malignancy. Doxorubicin is one of the effective chemotherapeutic agents for treating HCC. This problem is addressed in the present study based on an effort to enhance the efficacy of the drug through improvement of bioavailability and reduction of the cardiotoxicity of doxorubicin when intravenously (IV) administered. Doxorubicin-loaded lactoferrin nanoparticles (Nano-Doxo) were prepared by sol-oil chemistry. HCC was induced in rats by feeding drinking water containing 100 mg/l diethylnitrosamine for 8 weeks. Doxorubicin (Doxo) and Nano-Doxo (2 mg of drug/kg body weight) were administered IV. The results showed that Nano-Doxo is preferentially localized in liver and plasma as compared to that in heart, kidney, and spleen suggesting advantage of using Nano-Doxo in treatment of the liver cancer due to its higher bioavailability. The efficacy and safety of the Nano-Doxo and Doxo was further evaluated in terms of nodules formed on the liver. The results showed that the incidence of tumor is significantly decreased in Nano-Doxo treated rats compared to Doxo-treated rats. The higher efficacy of Nano-Doxo compared to Doxo is further confirmed by the levels of tumor-specific gene markers p53, p21, and VEGFR1. The drug-induced toxicity is evaluated in terms of cardiotoxicity by catalase and troponin, liver toxicity by SGPT and SGOT, and kidney toxicity by creatinine and blood urea. In conclusion, Nano-Doxo, with its increased bioavailability and reduced toxicity effects, is a safe and efficacious IV formulation for treatment of liver cancer.</jats:p

    Lactoferrin nanoparticles coencapsulated with curcumin and tenofovir improve vaginal defense against HIV-1 infection

    Full text link
    Aim: We report here the development of tenofovir- and curcumin-loaded lactoferrin nanoparticles (TCNPs) as an HIV-microbicide. Materials &amp; methods: TCNPs were subjected to various physicochemical characterization experiments, followed by in vitro and in vivo experiments to assess their efficacy. Results: TCNPs had a diameter of 74.31 ± 2.56 nm with a gross encapsulation of more than 61% for each drug. Nanoparticles were effective against HIV-1 replication, with an IC50 of 1.75 μM for curcumin and 2.8 μM for tenofovir. TCNPs provided drug release at the application site for up to 8–12 h, with minimal leakage into the systemic circulation. TCNPs showed spermicidal activity at ≥200 μM and induced minimal cytotoxicity and inflammation in the vaginal epithelium as revealed by histopathological and ELISA studies. Conclusion: We demonstrated that TCNPs could serve as a novel anti-HIV microbicidal agent in rats. [Formula: see text] </jats:p
    corecore