2 research outputs found

    Effects of chronic oestrogen treatment are not selective for uterine noradrenaline-containing sympathetic nerves: a transplantation study

    No full text
    Previous studies have shown that chronic administration of oestrogen during postnatal rat development dramatically reduces the total content of noradrenaline in the uterine horn, abolishes myometrial noradrenergic innervation and reduces noradrenaline-fluorescence intensity of intrauterine perivascular nerve fibres. In the present study we analysed if this response is due to a direct and selective effect of oestrogen on the uterine noradrenaline-containing sympathetic nerves, using the in oculo transplantation method. Small pieces of myometrium from prepubertal rats were transplanted into the anterior eye chamber of adult ovariectomised host rats. The effect of systemic chronic oestrogen treatment on the reinnervation of the transplants by noradrenaline-containing sympathetic fibres from the superior cervical ganglion was analysed on cryostat tissue sections processed by the glyoxylic acid technique. In addition, the innervation of the host iris was assessed histochemically and biochemically. The histology of the transplants and irises was examined in toluidine blue-stained semithin sections. These studies showed that after 5 wk in oculo, the overall size of the oestrogen-treated transplants was substantially larger than controls, and histology showed that this change was related to an increase in the size and number of smooth muscle cells within the transplant. Chronic oestrogen treatment did not provoke trophic changes in the irideal muscle. Histochemistry showed that control transplants had a rich noradrenergic innervation, associated with both myometrium and blood vessels. Conversely, in oestrogen-treated transplants only occasional fibres were recognised, showing a reduced NA fluorescence intensity. No changes in the pattern and density of innervation or in the total content of noradrenaline of the host irises were detected after chronic exposure to oestrogen. We interpreted these results to indicate that the effects of oestrogen on uterine noradrenaline-containing sympathetic nerves are neither selective or direct, but result from an interaction between sympathetic nerve fibres with the oestradiol-primed uterine tissue. A potential effect of oestrogen on the neurotrophic capacity of the uterus is discussed

    Plasticity in rat uterine sympathetic nerves: the role of TrkA and p75 nerve growth factor receptors

    No full text
    Uterine sympathetic innervation undergoes profound remodelling in response to physiological and experimental changes in the circulating levels of sex hormones. It is not known, however, whether this plasticity results from changes in the innervating neurons, the neuritogenic properties of the target tissue or both. Using densitometric immunohistochemistry, we analysed the effects of prepubertal chronic oestrogen treatment (three subcutaneous injections of 20 µg of β-oestradiol 17-cypionate on days 25, 27 and 29 after birth), natural peripubertal transition and late pregnancy (19–20 days post coitum) on the levels of TrkA and p75 nerve growth factor receptors in uterine-projecting sympathetic neurons of the thoraco-lumbar paravertebral sympathetic chain (T7–L2) identified using the retrograde tracer Fluorogold. For comparative purposes, levels of TrkA and p75 were assessed in the superior cervical ganglion (SCG) following prepubertal chronic oestrogen treatment. These studies showed that the vast majority of uterine-projecting neurons expressed both TrkA and p75. Both prepubertal chronic oestrogen treatment and the peripubertal transition increased the ratio p75 to TrkA in uterine-projecting neurons, whereas pregnancy elicited the opposite effect. Prepubertal chronic oestrogen treatment had no effects on levels of TrkA or p75 in sympathetic neurons of the SCG. Taken together, our data suggest that neurotrophin receptor-mediated events may contribute to regulate sex hormone-induced plasticity in uterine sympathetic nerves, and are in line with the idea that, in vivo, plasticity in uterine nerves involves changes in both the target and the innervating neurons
    corecore