3 research outputs found

    Microbial diversity in decaying oil palm empty fruit bunch (OPEFB) and isolation of lignin degrading bacteria from tropical environment

    Get PDF
    Oil palm empty fruit bunches (OPEFB) are the most abundant, inexpensive, and environmentally friendly lignocellulosic biomass in Malaysia. Investigations on the microbial diversity of decaying OPEFB may reveal microbes with complex enzymes that have the potential to enhance the conversion of lignocellulose into second-generation biofuels as well as the production of other value-added products. In the present study, fungal and bacterial diversities in decaying OPEFB were identified using Illumina MiSeq sequencing of the V3 region of the 16S rRNA gene and V4 region of the 18S rRNA gene. Fungal diversity in decaying OPEFB was dominated by the phylum Ascomycota (14.43%), while most of the bacterial sequences retrieved belonged to Proteobacteria (76.71%). Three bacterial strains isolated from decaying OPEFB, designated as S18, S20, and S36, appeared to grow with extracted OPEFB-lignin and Kraft lignin (KL) as the sole carbon source. 16S rRNA gene sequencing identified the 3 isolates as Paenibacillus sp.. The molecular weight distribution of KL before and after degradation showed significant depolymerization when treated with bacterial strains S18, S20, and S36. The presence of low-molecular-weight lignin-related compounds, such as vanillin and 2-methoxyphenol derivatives, which were detected by a GC-MS analysis, confirmed the KL-degrading activities of isolated Paenibacillus strains

    Combined ginger extract & Gelam honey modulate Ras/ERK and PI3K/AKT pathway genes in colon cancer HT29 cells

    No full text
    Background: The interconnected Ras/ERK and PI3K/AKT pathways play a central role in colorectal tumorigenesis, and they are targets for elucidating mechanisms involved in attempts to induce colon cancer cell death. Both ginger (Zingiber officinale) and honey have been shown to exhibit anti-tumor and anti-inflammation properties against many types of cancer, including colorectal cancer. However, there are currently no reports showing the combined effect of these two dietary compounds in cancer growth inhibition. The aim of this study was to evaluate the synergistic effect of crude ginger extract and Gelam honey in combination as potential cancer chemopreventive agents against the colorectal cancer cell line HT29. Methods: The cells were divided into 4 groups: the first group represents HT29 cells without treatment, the second and third groups were cells treated singly with either ginger or Gelam honey, respectively, and the last group represents cells treated with ginger and Gelam honey combined. Results: The results of MTS assay showed that the IC50 of ginger and Gelam honey alone were 5.2 mg/ml and 80 mg/ml, respectively, whereas the IC50 of the combination treatment was 3 mg/ml of ginger plus 27 mg/ml of Gelam honey with a combination index of < 1, suggesting synergism. Cell death in response to the combined ginger and Gelam honey treatment was associated with the stimulation of early apoptosis (upregulation of caspase 9 and IκB genes) accompanied by downregulation of the KRAS, ERK, AKT, Bcl-xL, NFkB (p65) genes in a synergistic manner. Conclusions: In conclusion, the combination of ginger and Gelam honey may be an effective chemopreventive and therapeutic strategy for inducing the death of colon cancer cells
    corecore