3 research outputs found

    Credit Card Fraud Detection Using Asexual Reproduction Optimization

    Full text link
    As the number of credit card users has increased, detecting fraud in this domain has become a vital issue. Previous literature has applied various supervised and unsupervised machine learning methods to find an effective fraud detection system. However, some of these methods require an enormous amount of time to achieve reasonable accuracy. In this paper, an Asexual Reproduction Optimization (ARO) approach was employed, which is a supervised method to detect credit card fraud. ARO refers to a kind of production in which one parent produces some offspring. By applying this method and sampling just from the majority class, the effectiveness of the classification is increased. A comparison to Artificial Immune Systems (AIS), which is one of the best methods implemented on current datasets, has shown that the proposed method is able to remarkably reduce the required training time and at the same time increase the recall that is important in fraud detection problems. The obtained results show that ARO achieves the best cost in a short time, and consequently, it can be considered a real-time fraud detection system

    Actionable Artificial Intelligence for the Future of Production

    Full text link
    The Internet of Production (IoP) promises to be the answer to major challenges facing the Industrial Internet of Things (IIoT) and Industry 4.0. The lack of inter-company communication channels and standards, the need for heightened safety in Human Robot Collaboration (HRC) scenarios, and the opacity of data-driven decision support systems are only a few of the challenges we tackle in this chapter. We outline the communication and data exchange within the World Wide Lab (WWL) and autonomous agents that query the WWL which is built on the Digital Shadows (DS). We categorize our approaches into machine level, process level, and overarching principles. This chapter surveys the interdisciplinary work done in each category, presents different applications of the different approaches, and offers actionable items and guidelines for future work.The machine level handles the robots and machines used for production and their interactions with the human workers. It covers low-level robot control and optimization through gray-box models, task-specific motion planning, and opti- mization through reinforcement learning. In this level, we also examine quality assurance through nonintrusive real-time quality monitoring, defect recognition, and quality prediction. Work on this level also handles confidence, verification, and validation of re-configurable processes and reactive, modular, transparent process models. The process level handles the product life cycle, interoperability and analysis and optimization of production processes, which is overall attained by analyzing process data and event logs to detect and eliminate bottlenecks and learn new process models. Moreover, this level presents a communication channel between human workers and processes by extracting and formalizing human knowledge into ontology and providing a decision support by reasoning over this information. Overarching principles present a toolbox of omnipresent approaches for data collection, analysis, augmentation, and management, as well as the visualization and explanation of black-box models
    corecore