24 research outputs found

    Decoding Time-Varying Functional Connectivity Networks via Linear Graph Embedding Methods

    Get PDF
    An exciting avenue of neuroscientific research involves quantifying the time-varying properties of functional connectivity networks. As a result, many methods have been proposed to estimate the dynamic properties of such networks. However, one of the challenges associated with such methods involves the interpretation and visualization of high-dimensional, dynamic networks. In this work, we employ graph embedding algorithms to provide low-dimensional vector representations of networks, thus facilitating traditional objectives such as visualization, interpretation and classification. We focus on linear graph embedding methods based on principal component analysis and regularized linear discriminant analysis. The proposed graph embedding methods are validated through a series of simulations and applied to fMRI data from the Human Connectome Project

    The Automatic Neuroscientist: automated experimental design with real-time fMRI

    Get PDF
    A standard approach in functional neuroimaging explores how a particular cognitive task activates a set of brain regions (one task-to-many regions mapping). Importantly though, the same neural system can be activated by inherently different tasks. To date, there is no approach available that systematically explores whether and how distinct tasks probe the same neural system (many tasks-to-region mapping). In our work, presented here we propose an alternative framework, the Automatic Neuroscientist, which turns the typical fMRI approach on its head. We use real-time fMRI in combination with state-of-the-art optimisation techniques to automatically design the optimal experiment to evoke a desired target brain state. Here, we present two proof-of-principle studies involving visual and auditory stimuli. The data demonstrate this closed-loop approach to be very powerful, hugely speeding up fMRI and providing an accurate estimation of the underlying relationship between stimuli and neural responses across an extensive experimental parameter space. Finally, we detail four scenarios where our approach can be applied, suggesting how it provides a novel description of how cognition and the brain interrelate.Comment: 22 pages, 7 figures, work presented at OHBM 201
    corecore