2 research outputs found

    Enhancing the Mechanical Properties of Historical Masonry Using Fiber-Reinforced Geopolymers

    No full text
    Current research into the production of sustainable construction materials for retrofitting and strengthening historic structures has been rising, with geopolymer technology being seen as an advantageous alternative to traditional concrete. Fiber reinforcement using this novel cementitious material involves a low embodied carbon footprint while ensuring cohesiveness with local materials. This study aims to develop fly ash-based geopolymers reinforced with six different types of fibers: polyvinyl alcohol, polypropylene, chopped basalt, carbon fiber, and copper-coated stainless steel. The samples are produced by mixing the geopolymer mortar in random distribution and content. Twenty-eight geopolymer mixes are evaluated through compressive strength, split-tensile strength, and modulus of elasticity to determine the fiber mix with the best performance compared with pure geopolymer mortar as a control. Polyvinyl alcohol and copper-coated stainless-steel fiber samples had considerably high mechanical properties and fracture toughness under applied tensile loads. However, the polypropylene fiber source did not perform well and had lower mechanical properties. One-way ANOVA verifies these results. Based on these findings, polyvinyl alcohol and stainless-steel fibers are viable options for fiber reinforcement in historical structures, and further optimization and testing are recommended before application as a reinforcement material in historic structures

    Geopolymers as sustainable material for strengthening and restoring unreinforced masonry structures:A review

    No full text
    Unreinforced masonry (URM) structures are vulnerable to earthquakes; thus, materials and techniques for their strengthening and restoration should be developed. However, the materials used in some of the existing retrofitting technologies for URM and the waste produced at its end-of-life are unsustainable. The production of ordinary Portland cement (OPC) worldwide has enormously contributed to the global carbon footprint, resulting in persistent environmental problems. Replacing OPC with geopolymers, which are more sustainable and environmentally friendly, presents a potential solution to these problems. Geopolymers can replace the OPC component in engineering cementitious composites (ECC), recommended to strengthen and restore URM structures. In the present paper, the state-of-the-art knowledge development on applying geopolymers in URM structures is discussed. The discussion is focused on geopolymers and their components, material characterization, geopolymers as a strengthening and restoration material, and fiber-reinforced geopolymers and their application to URM structures. Based on this review, it was found that the mechanical properties of geopolymers are on par with that of OPC; however, there are few studies on the mentioned applications of geopolymers. The characterization of geopolymers’ mechanical and physical properties as a restoration material for URM structures is still limited. Therefore, other properties such as chemical interaction with the substrate, workability, thixotropic behavior, and aesthetic features of geopolymers need to be investigated for its wide application. The application method of geopolymer-based ECC as a strengthening material for a URM structure is by grouting injection. It is also worth recommending that other application techniques such as deep repointing, jacketing, and cement-plastering be explored
    corecore