4 research outputs found

    Short-Term Evaluation in Growing Rats of Diet Containing Bacillus thuringiensis Cry1Ia12 Entomotoxin: Nutritional Responses and Some Safety Aspects

    Get PDF
    The Cry1Ia12 entomotoxin from a Brazilian Bacillus thuringiensis strain is currently being expressed in cotton cultivars to confer resistance to insect-pests. The present study aimed to assess the effects of a diet containing Cry1Ia12 protein on growing rats. A test diet containing egg white and Cry1Ia12 (0.1% of total protein) as a protein source was offered to rats for ten days. In addition, an acute toxicity bioassay was performed in rats with a single oral dose of the entomotoxin (12 mg/animal). No adverse effects were observed in the animals receiving the test diet when compared to those receiving a control diet (egg white). The analysed parameters included relative dry weight of internal organs, duodenum histology, blood biochemistry, and nutritional parameters. The results of the acute toxicity test showed no mortality or behaviour alteration. Thus, Cry1Ia12 toxin at the tested concentration does not cause deleterious effects on growing rats when incorporated in the diet for 10 days

    Evaluation of Cytotoxic and Antimicrobial Effects of Two Bt Cry Proteins on a GMO Safety Perspective

    No full text
    Studies have contested the innocuousness of Bacillus thuringiensis (Bt) Cry proteins to mammalian cells as well as to mammals microbiota. Thus, this study aimed to evaluate the cytotoxic and antimicrobial effects of two Cry proteins, Cry8Ka5 (a novel mutant protein) and Cry1Ac (a widely distributed protein in GM crops). Evaluation of cyto- and genotoxicity in human lymphocytes was performed as well as hemolytic activity coupled with cellular membrane topography analysis in mammal erythrocytes. Effects of Cry8Ka5 and Cry1Ac upon Artemia sp. nauplii and upon bacteria and yeast growth were assessed. The toxins caused no significant effects on the viability (IC50>1,000 µg/mL) or to the cellular DNA integrity of lymphocytes (no effects at 1,000 µg/mL). The Cry8Ka5 and Cry1Ac proteins did not cause severe damage to erythrocytes, neither with hemolysis (IC50>1,000 µg/mL) nor with alterations in the membrane. Likewise, the Cry8Ka5 and Cry1Ac proteins presented high LC50 (755.11 and >1,000 µg/mL, resp.) on the brine shrimp lethality assay and showed no growth inhibition of the microorganisms tested (MIC>1,000 µg/mL). This study contributed with valuable information on the effects of Cry8Ka5 and Cry1Ac proteins on nontarget organisms, which reinforce their potential for safe biotechnological applications
    corecore