3 research outputs found

    Depredation influences anglers’ perceptions on coastal shark management and conservation in the United States Gulf of Mexico

    Get PDF
    Overfishing, habitat degradation, and climate change have caused declines in shark populations throughout the world’s oceans. However, in the United States Gulf of Mexico (GoM), populations of several coastal shark species are starting to stabilize following decades of successful regulations and enforcement. The stabilization of coastal shark populations, coupled with increases in recreational fishing effort, has the potential to escalate human-wildlife interactions. The most often reported conflict is shark depredation, the partial or complete removal of a hooked species by a shark. Reported increases in shark depredation within the last several years have begun to erode angler support for shark conservation, potentially undermining decades of previous work. To address these concerns, we implemented a GoM-wide online survey to characterize the impact of depredation on recreational reef fish anglers’ fishing satisfaction and perceptions of shark management and conservation. Our results revealed that most recreational anglers in the GoM have witnessed depredation but have not changed their fishing behaviors. In contrast, anglers’ viewpoints on managing shark populations were split between reducing population sizes and maintaining current population levels. As coastal shark populations in the GoM continue to recover, shark depredation is likely to increase. Consequently, efforts to characterize anglers’ satisfaction and perceptions are a critical component of future shark conservation initiatives

    Dietary Habits of Hardhead (<i>Ariopsis felis</i>) and Gafftopsail (<i>Bagre marinus</i>) Catfish Revealed through DNA Barcoding of Stomach Contents

    No full text
    A better understanding of trophic interactions between hardhead catfish (Ariopsis felis) and gafftopsail catfish (Bagre marinus) is crucial for developing multi-species management strategies for the northern Gulf of Mexico (GOM). These two species are often aggregated in food web models; however, limited data are available to substantiate this approach. Therefore, the present study aimed to describe the dietary habits of hardhead catfish and gafftopsail catfish using analysis of stomach contents aided by DNA barcoding. Hardhead (n = 693) and gafftopsail (n = 655) catfish were sampled in the northern GOM from 2015–2019 using both fisheries-dependent and -independent techniques. The average percent number (%N), average percent mass (%M), prey specific number (%PN), prey specific mass (%PM), and prey-specific index of relative importance (%PSIRI) were computed to quantify prey species. The stomach content analysis identified distinct differences in diet between hardhead and gafftopsail catfish. Crustaceans were the most important prey for hardhead catfish, while gafftopsail catfish showed a significantly broader dietary breadth and were primarily piscivorous. Multivariate analyses indicated that the location of capture explained the greatest amount of diet variability for both species. These findings address fundamental knowledge gaps regarding the dietary habits of hardhead and gafftopsail catfish in northern GOM ecosystems

    A historicidade do percurso do GT trabalho e educação: uma anålise para debate

    No full text
    corecore