51 research outputs found

    Non-decoupling effects of SUSY in the physics of Higgs bosons and their phenomenological implications

    Get PDF
    We consider a plausible scenario in the Minimal Supersymmetric Standard Model (MSSM) where all the genuine supersymmetric (SUSY) particles are heavier than the electroweak scale. In this situation, indirect searches via their radiative corrections to low energy observables are complementary to direct searches, and they can be crucial if the SUSY masses are at the TeV energy range. We summarize the most relevant heavy SUSY radiative effects in Higgs boson physics and emphasize those that manifest a non-decoupling behaviour. We focus, in particular, on the SUSY-QCD non-decoupling effects in fermionic Higgs decays, flavour changing Higgs decays and Yukawa couplings. Some of their phenomenological implications at future colliders are also studied.Comment: Invited talk given by M. J. Herrero at the X Mexican School of Particles and Fields, Playa del Carmen, Mexico, November 200

    Efectos de varios factores ambientales sobre las tasas de descomposición en encinares mediterráneos

    Get PDF
    Resumen de una presentación realizada en: I Simposio sobre Interacciones Planta-Suelo (ICA-CSIC, Madrid, 25-26 Febrero 2016)[ES] Los encinares son ecosistemas de gran valor que están sufriendo un proceso de decaimiento, lo que puede afectar a su capacidad para almacenar carbono. Se plantea este proyecto de tesis para estudiar el efecto del decaimiento de encinares sobre las tasas de descomposición de la hojarasca, las raíces y las herbáceas, y los factores medioambientales que la controlan. Los factores que se pretende estudiar son: la calidad de la materia en descomposición, el clima, la fotodegradación, y el efecto de diferentes conjuntos de fauna del suelo. El efecto de dichos factores sobre la descomposición se analizará a través de 4 experimentos con bolsas de descomposición. Experimento 1: Efecto del clima, de la fotodegradación y de la calidad de la hojarasca sobre las tasas de descomposición. Se ha diseñado un experimento factorial para el seguimiento de las tasas de descomposición de herbáceas y de hojas y raíces de encinas, situando bolsas en 8 encinares afectados distribuidos por el territorio peninsular español. Experimento 2: Efecto de la microfauna, la mesofauna y la macrofauna del suelo sobre los procesos de descomposición de hojarasca. Se estudiará mediante tratamientos de exclusión de fauna del suelo. Experimento 3: Efecto interactivo de la temperatura, precipitación y radiación solar sobre la descomposición de hojarasca. Se utilizarán mesocosmos para someter bolsas de hojarasca de herbáceas a dos niveles para cada uno de esos tres factores, con todas las interacciones entre ellos. Experimento 4: Contribución de diferentes procesos abióticos (fotodegradación y degradación térmica), bióticos (descomposición microbiana) así como su interacción en la descomposición de la materia orgánica. Se realizará con herbáceas bajo condiciones controladas de laboratorio. Estos experimentos permitirán describir de una manera mecanicista un proceso tan relevante para las interacciones planta-suelo como es la descomposición así como los factores medioambientales que la controlan.Peer reviewe

    Lepton flavor violating Higgs boson decays from massive seesaw neutrinos

    Full text link
    Lepton flavor violating Higgs boson decays are studied within the context of seesaw models with Majorana massive neutrinos. Two models are considered: The SM-seesaw, with the Standard Model Particle content plus three right handed neutrinos, and the MSSM-seesaw, with the Minimal Supersymmetric Standard Model particle content plus three right handed neutrinos and their supersymmetric partners. The widths for these decays are derived from a full one-loop diagrammatic computation in both models, and they are analyzed numerically in terms of the seesaw parameters, namely, the Dirac and Majorana mass matrices. Several possible scenarios for these mass matrices that are compatible with neutrino data are considered. In the SM-seesaw case, very small branching ratios are found for all studied scenarios. These ratios are explained as a consequence of the decoupling behaviour of the heavy right handed neutrinos. In contrast, in the MSSM-seesaw case, sizeable branching ratios are found for some of the leptonic flavor violating decays of the MSSM neutral Higgs bosons and for some choices of the seesaw matrices and MSSM parameters. The relevance of the two competing sources of lepton flavor changing interactions in the MSSM-seesaw case is also discussed. The non-decoupling behaviour of the supersymmetric particles contributing in the loop-diagrams is finally shown.Comment: 44pgs. Version to appear in Phys.Rev.

    Evaluation of immunological escape mechanisms in a mouse model of colorectal liver metastases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The local and systemic activation and regulation of the immune system by malignant cells during carcinogenesis is highly complex with involvement of the innate and acquired immune system. Despite the fact that malignant cells do have antigenic properties their immunogenic effects are minor suggesting tumor induced mechanisms to circumvent cancer immunosurveillance. The aim of this study is the analysis of tumor immune escape mechanisms in a colorectal liver metastases mouse model at different points in time during tumor growth.</p> <p>Methods</p> <p>CT26.WT murine colon carcinoma cells were injected intraportally in Balb/c mice after median laparotomy using a standardized injection technique. Metastatic tumor growth in the liver was examined by standard histological procedures at defined points in time during metastatic growth. Liver tissue with metastases was additionally analyzed for cytokines, T cell markers and Fas/Fas-L expression using immunohistochemistry, immunofluorescence and RT-PCR. Comparisons were performed by analysis of variance or paired and unpaired <it>t </it>test when appropriate.</p> <p>Results</p> <p>Intraportal injection of colon carcinoma cells resulted in a gradual and time dependent metastatic growth. T cells of regulatory phenotype (CD4+CD25+Foxp3+) which might play a role in protumoral immune response were found to infiltrate peritumoral tissue increasingly during carcinogenesis. Expression of cytokines IL-10, TGF-β and TNF-α were increased during tumor growth whereas IFN-γ showed a decrease of the expression from day 10 on following an initial increase. Moreover, liver metastases of murine colon carcinoma show an up-regulation of FAS-L on tumor cell surface with a decreased expression of FAS from day 10 on. CD8+ T cells express FAS and show an increased rate of apoptosis at perimetastatic location.</p> <p>Conclusions</p> <p>This study describes cellular and macromolecular changes contributing to immunological escape mechanisms during metastatic growth in a colorectal liver metastases mouse model simulating the situation in human cancer.</p

    Prolonged Survival of Allografts Induced by Mycobacterial Hsp70 Is Dependent on CD4+CD25+ Regulatory T Cells

    Get PDF
    Background: Heat shock proteins (Hsps) are stress induced proteins with immunomodulatory properties. The Hsp70 of Mycobacterium tuberculosis (TBHsp70) has been shown to have an anti-inflammatory role on rodent autoimmune arthritis models, and the protective effects were demonstrated to be dependent on interleukin-10 (IL-10). We have previously observed that TBHsp70 inhibited maturation of dendritic cells (DCs) and induced IL-10 production by these cells, as well as in synovial fluid cells. Methodology/Principal Findings: We investigated if TBHsp70 could inhibit allograft rejection in two murine allograft systems, a transplanted allogeneic melanoma and a regular skin allograft. In both systems, treatment with TBHsp70 significantly inhibited rejection of the graft, and correlated with regulatory T cells (Tregs) recruitment. This effect was not tumor mediated because injection of TBHsp70 in tumor-free mice induced an increase of Tregs in the draining lymph nodes as well as inhibition of proliferation of lymph node T cells and an increase in IL-10 production. Finally, TBHsp70 inhibited skin allograft acute rejection, and depletion of Tregs using a monoclonal antibody completely abolished this effect. Conclusions/Significance: We present the first evidence for an immunosuppressive role for this protein in a graft rejection system, using an innovative approach - immersion of the graft tissue in TBHsp70 solution instead of protein injection. Also, this is the first study that demonstrates dependence on Treg cells for the immunosuppressive role of TBHsp70. This finding is relevant for the elucidation of the immunomodulatory mechanism of TBHsp70. We propose that this protein can be used not only for chronic inflammatory diseases, but is also useful for organ transplantation management.Pontificia Universidade Catolica do Rio Grande do Sul (PUCRS)Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)Financiadora de Estudos e Projetos (FINEP

    A Chirality-Based Quantum Leap

    Get PDF
    There is increasing interest in the study of chiral degrees of freedom occurring in matter and in electromagnetic fields. Opportunities in quantum sciences will likely exploit two main areas that are the focus of this Review: (1) recent observations of the chiral-induced spin selectivity (CISS) effect in chiral molecules and engineered nanomaterials and (2) rapidly evolving nanophotonic strategies designed to amplify chiral light-matter interactions. On the one hand, the CISS effect underpins the observation that charge transport through nanoscopic chiral structures favors a particular electronic spin orientation, resulting in large room-temperature spin polarizations. Observations of the CISS effect suggest opportunities for spin control and for the design and fabrication of room-temperature quantum devices from the bottom up, with atomic-scale precision and molecular modularity. On the other hand, chiral-optical effects that depend on both spin- and orbital-angular momentum of photons could offer key advantages in all-optical and quantum information technologies. In particular, amplification of these chiral light-matter interactions using rationally designed plasmonic and dielectric nanomaterials provide approaches to manipulate light intensity, polarization, and phase in confined nanoscale geometries. Any technology that relies on optimal charge transport, or optical control and readout, including quantum devices for logic, sensing, and storage, may benefit from chiral quantum properties. These properties can be theoretically and experimentally investigated from a quantum information perspective, which has not yet been fully developed. There are uncharted implications for the quantum sciences once chiral couplings can be engineered to control the storage, transduction, and manipulation of quantum information. This forward-looking Review provides a survey of the experimental and theoretical fundamentals of chiral-influenced quantum effects and presents a vision for their possible future roles in enabling room-temperature quantum technologies.ISSN:1936-0851ISSN:1936-086

    Habitat Fragmentation can Modulate Drought Effects on the Plant-soil-microbial System in Mediterranean Holm Oak (Quercus ilex) Forests

    Get PDF
    © 2015, Springer Science+Business Media New York. Ecological transformations derived from habitat fragmentation have led to increased threats to above-ground biodiversity. However, the impacts of forest fragmentation on soils and their microbial communities are not well understood. We examined the effects of contrasting fragment sizes on the structure and functioning of soil microbial communities from holm oak forest patches in two bioclimatically different regions of Spain. We used a microcosm approach to simulate the annual summer drought cycle and first autumn rainfall (rewetting), evaluating the functional response of a plant-soil-microbial system. Forest fragment size had a significant effect on physicochemical characteristics and microbial functioning of soils, although the diversity and structure of microbial communities were not affected. The response of our plant-soil-microbial systems to drought was strongly modulated by the bioclimatic conditions and the fragment size from where the soils were obtained. Decreasing fragment size modulated the effects of drought by improving local environmental conditions with higher water and nutrient availability. However, this modulation was stronger for plant-soil-microbial systems built with soils from the northern region (colder and wetter) than for those built with soils from the southern region (warmer and drier) suggesting that the responsiveness of the soil-plant-microbial system to habitat fragmentation was strongly dependent on both the physicochemical characteristics of soils and the historical adaptation of soil microbial communities to specific bioclimatic conditions. This interaction challenges our understanding of future global change scenarios in Mediterranean ecosystems involving drier conditions and increased frequency of forest fragmentation
    corecore