2 research outputs found

    Impact of RbF-PDT on Cu(In,Ga)Se

    No full text
    Alkali-fluoride post-deposition treatments (PDTs) of Cu(In,Ga)Se2 (CIGS) absorbers have repeatedly resulted in device efficiency improvements, observed mainly due to an open-circuit voltage (Voc) enhancement. Replacement of the CdS buffer layer with a higher band gap alternative can increase the short-circuit current density (Jsc) and also eliminate the use of Cd. In many alternative-buffer attempts, however, the Jsc gain was accompanied by a Voc loss, resulting in some degree of performance loss. In order to better understand the impact of RbF-PDT, we analyze a combination of experimental devices produced in the same in-line CIGS run with and without RbF-PDT in combination with chemical-bath-deposited CdS and Zn(O,S) buffers. Low-temperature current–voltage curves indicate a difference in Rb impact on the CIGS/CdS and CIGS/Zn(O,S) p-n junctions. For example, the diode-current barrier which creates a rollover often observed in RbF-treated CIGS/CdS current–voltage curves is significantly reduced for the CIGS/Zn(O,S) junction. Although the RbF-PDT had a positive impact on both junction partner combinations, the CIGS/Zn(O,S) devices' Voc and fill factor (FF) benefited stronger from the RbF treatment. As a result, in our samples, the Jsc and FF gain balanced the Voc loss, thus reducing the efficiency difference between cells with CdS and Zn(O,S) buffers

    Impact of Ag content on device properties of Cu(In,Ga)Se

    No full text
    Partial substitution of Cu by Ag in Cu(In,Ga)Se2 (CIGS) solar cells is advantageous as it allows lower temperature growth while maintaining high performance. To understand the role of Ag on device performance, we present a comprehensive analysis of (Ag,Cu)(In,Ga)Se2 (ACIGS) samples with an [Ag]/([Ag]+[Cu]) (AAC) ratio varying from 7% to 22%. The analysis involves a set of material and device characterization techniques as well as numerical simulations. Multiple electrical and material properties show a systematic dependence on the increased Ag content. These include a carrier-density decrease, a grain-size increase, and a flattened [Ga]/([Ga] + [In]) (GGI) profile leading to a higher minimum band gap energy and a reduced back grading. Although the best performing device (PCE = 18.0%) in this set has an AAC = 7%, cells with higher Ag contents have an advantage of a smoother absorber surface which is attractive for tandem applications, despite their slightly inferior conversion efficiencies (PCE = 16.4% for 22% Ag)
    corecore