43,584 research outputs found

    Sea flavor content of octet baryons and intrinsic five-quark Fock states

    Full text link
    Sea quark contents of the octet baryons are investigated by employing an extended chiral constituent quark approach, which embodies higher Fock five-quark components in the baryons wave-functions. The well-known flavor asymmetry of the nucleon sea dˉ−uˉ\bar{d}-\bar{u}, is used as input to predict the probabilities of uˉ\bar{u}, dˉ\bar{d} and sˉ\bar{s} in the nucleon, Λ\Lambda, Σ\Sigma and Ξ\Xi baryons, due to the intrinsic five-quark components in the baryons wave functions.Comment: 22 page

    Strong decays of N∗(1535)N^{*}(1535) in an extended chiral quark model

    Full text link
    The strong decays of the N∗(1535)N^{*}(1535) resonance are investigated in an extended chiral quark model by including the low-lying qqqqqˉqqqq\bar{q} components in addition to the qqqqqq component. The results show that these five-quark components in N∗(1535)N^{*}(1535) contribute significantly to the N∗(1535)→NπN^{*}(1535)\to N\pi and N∗(1535)→NηN^{*}(1535)\to N\eta decays. The contributions to the NηN\eta decay come from both the lowest energy and the next-to-lowest energy five-quarks components, while the contributions to the NπN\pi decay come from only the latter one. Taking these contributions into account, the description for the strong decays of N∗(1535)N^{*}(1535) is improved, especially, for the puzzling large ratio of the decays to NηN\eta and NπN\pi.Comment: 6 pages, 1 figur

    Entanglement enhancement and postselection for two atoms interacting with thermal light

    Get PDF
    The evolution of entanglement for two identical two-level atoms coupled to a resonant thermal field is studied for two different families of input states. Entanglement enhancement is predicted for a well defined region of the parameter space of one of these families. The most intriguing result is the possibility of probabilistic production of maximally entangled atomic states even if the input atomic state is factorized and the corresponding output state is separable.Comment: accepted for publication in J. Phys.

    The future design direction of smart clothing development

    Get PDF
    Literature indicates that Smart Clothing applications, the next generation of clothing and electronic products, have been struggling to enter the mass market because the consumers’ latent needs have not been recognised. Moreover, the design direction of Smart Clothes remains unclear and unfocused. Nevertheless, a clear design direction is necessary for all product development. Therefore, this research aims to identify the design directions of the emerging Smart Clothes industry by conducting a questionnaire survey and focus groups with its major design contributors. The results reveal that the current strategy of embedding a wide range of electronic functions in a garment is not suitable. This is primarily because it does not match the users’ requirements, purchasing criteria and lifestyle. The results highlight the respondents’ preference for personal healthcare and sportswear applications that suit their lifestyle, are aesthetically attractive, and provide a practical function

    One Dimensional Magnetized TG Gas Properties in an External Magnetic Field

    Full text link
    With Girardeau's Fermi-Bose mapping, we have constructed the eigenstates of a TG gas in an external magnetic field. When the number of bosons NN is commensurate with the number of potential cycles MM, the probability of this TG gas in the ground state is bigger than the TG gas raised by Girardeau in 1960. Through the comparison of properties between this TG gas and Fermi gas, we find that the following issues are always of the same: their average value of particle's coordinate and potential energy, system's total momentum, single-particle density and the pair distribution function. But the reduced single-particle matrices and their momentum distributions between them are different.Comment: 6 pages, 4 figure

    A side-by-side comparison of Daya Bay antineutrino detectors

    Get PDF
    The Daya Bay Reactor Neutrino Experiment is designed to determine precisely the neutrino mixing angle Ξ_(13) with a sensitivity better than 0.01 in the parameter sin^22Ξ_(13) at the 90% confidence level. To achieve this goal, the collaboration will build eight functionally identical antineutrino detectors. The first two detectors have been constructed, installed and commissioned in Experimental Hall 1, with steady data-taking beginning September 23, 2011. A comparison of the data collected over the subsequent three months indicates that the detectors are functionally identical, and that detector-related systematic uncertainties are smaller than requirements

    Nucleon-nucleon cross sections in neutron-rich matter and isospin transport in heavy-ion reactions at intermediate energies

    Full text link
    Nucleon-nucleon (NN) cross sections are evaluated in neutron-rich matter using a scaling model according to nucleon effective masses. It is found that the in-medium NN cross sections are not only reduced but also have a different isospin dependence compared with the free-space ones. Because of the neutron-proton effective mass splitting the difference between nn and pp scattering cross sections increases with the increasing isospin asymmetry of the medium. Within the transport model IBUU04, the in-medium NN cross sections are found to influence significantly the isospin transport in heavy-ion reactions. With the in-medium NN cross sections, a symmetry energy of Esym(ρ)≈31.6(ρ/ρ0)0.69E_{sym}(\rho)\approx 31.6(\rho /\rho_{0})^{0.69} was found most acceptable compared with both the MSU isospin diffusion data and the presently acceptable neutron-skin thickness in 208^{208}Pb. The isospin dependent part Kasy(ρ0)K_{asy}(\rho _{0}) of isobaric nuclear incompressibility was further narrowed down to −500±50-500\pm 50 MeV. The possibility of determining simultaneously the in-medium NN cross sections and the symmetry energy was also studied. The proton transverse flow, or even better the combined transverse flow of neutrons and protons, can be used as a probe of the in-medium NN cross sections without much hindrance from the uncertainties of the symmetry energy.Comment: 32 pages including 14 figures. Submitted to Phys. Rev.
    • 

    corecore