19 research outputs found

    Bile Acids: Major Regulator of the Gut Microbiome

    Full text link
    Bile acids are synthesized from cholesterol and play an important role in regulating intestinal microflora. The different degrees of hydrophobicity and acidity of individual bile acids may affect their antimicrobial properties. We examined the antimicrobial effects of different bile acids on various microorganisms in vitro and confirmed whether these remain consistent in vivo. Using human bile acids, including ursodeoxycholic acid, cholic acid, chenodeoxycholic acid, deoxycholic acid, and lithocholic acid, a disc diffusion test was performed, and a rodent model was created to determine the antimicrobial effects of each bile acid. The fecal bacterial population was analyzed using a real-time polymerase chain reaction. Each bile acid showed different microbial inhibitory properties. The inhibitory activity of bile acids against microbiota which normally resides in the gastrointestinal tract and biliary system, was low; however, normal flora of other organs was significantly inhibited. Changes in microbial counts after bile acid administration in a rodent model differed in the colon and cecum. The in vivo and in vitro results show that the antimicrobial effects of bile acids against intestinal microbiota were similar. In conclusion, bile acids could be a novel treatment strategy to regulate gut microbiota

    SAMHD1-induced endosomal FAK signaling promotes human renal clear cell carcinoma metastasis by activating Rac1-mediated lamellipodia protrusion

    Full text link
    Abstract Human sterile α motif and HD domain-containing protein 1 (SAMHD1) has deoxyribonucleoside triphosphohydrolase (dNTPase) activity that allows it to defend against human immunodeficiency virus type I (HIV-1) infections and regulate the cell cycle. Although SAMHD1 mutations have been identified in various cancer types, their role in cancer is unclear. Here, we aimed to investigate the oncogenic role of SAMHD1 in human clear cell renal cell carcinoma (ccRCC), particularly as a core molecule promoting cancer cell migration. We found that SAMHD1 participated in endocytosis and lamellipodia formation. Mechanistically, SAMHD1 contributed to the formation of the endosomal complex by binding to cortactin. Thereafter, SAMHD1-stimulated endosomal focal adhesion kinase (FAK) signaling activated Rac1, which promoted lamellipodia formation on the plasma membrane and enhanced the motility of ccRCC cells. Finally, we observed a strong correlation between SAMHD1 expression and the activation of FAK and cortactin in tumor tissues obtained from patients with ccRCC. In brief, these findings reveal that SAMHD1 is an oncogene that plays a pivotal role in ccRCC cell migration through the endosomal FAK-Rac1 signaling pathway

    Correction: Effects of Mesenchymal Stem Cell Treatment on the Expression of Matrix Metalloproteinases and Angiogenesis during Ischemic Stroke Recovery.

    Full text link
    The efficacy of mesenchymal stem cell (MSC) transplantation in ischemic stroke might depend on the timing of administration. We investigated the optimal time point of MSC transplantation. After MSC treatment, we also investigated the expression of matrix metalloproteinases (MMPs), which play a role in vascular and tissue remodeling.Human bone marrow-derived MSCs (2 × 10(6), passage 5) were administrated intravenously after permanent middle cerebral artery occlusion (MCAO) was induced in male Sprague-Dawley rats. First, we determined the time point of MSC transplantation that led to maximal neurological recovery at 1 h, 1 day, and 3 days after MCAO. Next, we measured activity of MMP-2 and MMP-9, neurological recovery, infarction volume, and vascular density after transplanting MSCs at the time that led to maximal neurological recovery.Among the MSC-transplanted rats, those of the MSC 1-hour group showed maximal recovery in the rotarod test (P = 0.023) and the Longa score (P = 0.018). MMP-2 activity at 1 day after MCAO in the MSC 1-hour group was significantly higher than that in the control group (P = 0.002), but MMP-9 activity was not distinct. The MSC 1-hour group also showed smaller infarction volume and higher vascular density than did the control group.In a permanent model of rodent MCAO, very early transplantation of human MSCs (1 h after MCAO) produced greater neurological recovery and decreased infraction volume. The elevation of MMP-2 activity and the increase in vascular density after MSC treatment suggest that MSCs might help promote angiogenesis and lead to neurological improvement during the recovery phase after ischemic stroke

    Ninjurin1 deficiency aggravates colitis development by promoting M1 macrophage polarization and inducing microbial imbalance

    Full text link
    Disruption of colonic homeostasis caused by aberrant M1/M2 macrophage polarization and dysbiosis contributes to inflammatory bowel disease (IBD) pathogenesis. However, the molecular factors mediating colonic homeostasis are not well characterized. Here, we found that Ninjurin1 (Ninj1) limits colon inflammation by regulating macrophage polarization and microbiota composition under homeostatic conditions and during colitis development. Ninj1 deletion in mice induced hypersusceptibility to colitis, with increased prevalence of colitogenic Prevotellaceae strains and decreased immunoregulatory Lachnospiraceae strains. Upon co-housing (CoH) with WT mice, Ninj1(-/-) mice showed increased Lachnospiraceae and decreased Prevotellaceae abundance, with subsequent improvement of colitis. Under homeostatic conditions, M1 macrophage frequency was higher in the Ninj1(-/-) mouse colons than wild-type (WT) mouse colons, which may contribute to increased basal colonic inflammation and microbial imbalance. Following colitis induction, Ninj1 expression was increased in macrophages; meanwhile Ninj1(-/-) mice showed severe colitis development and impaired recovery, associated with decreased M2 macrophages and escalated microbial imbalance. In vitro, Ninj1 knockdown in mouse and human macrophages activated M1 polarization and restricted M2 polarization. Finally, the transfer of WT macrophages ameliorated severe colitis in Ninj1(-/-) mice. These findings suggest that Ninj1 mediates colonic homeostasis by modulating M1/M2 macrophage balance and preventing extensive dysbiosis, with implications for IBD prevention and therapy

    3D-Stacked Carbon Composites Employing Networked Electrical Intra-Pathways for Direct-Printable, Extremely Stretchable Conductors

    Full text link
    The newly designed materials for stretchable conductors meeting the demands for both electrical and mechanical stability upon morphological elongation have recently been of paramount interest in the applications of stretchable, wearable electronics. To date, carbon nanotube-elastomeric polymer mixtures have been mainly developed; however, the method of preparing such CNT–polymer mixtures as stretchable conductors has been limited to an ionic liquid-mediated approach. In this study, we suggest a simple wet-chemical method for producing newly designed, three-dimensionally stacked carbon composite materials that facilitate the stable morphological elongation up to a strain of 300% with normalized conductivity variation of only 0.34 under a strain of 300%. Through a comparative study with other control samples, it is demonstrated that the intraconnected electrical pathways in hierarchically structured composite materials enable the generation of highly stretchable conductors. Their direct patternability is also evaluated by printing on demand using a programmable disperser without the use of prepatterned masks
    corecore