18 research outputs found
Recommended from our members
Respiratory Health Effects of Exposure to Ambient Particulate Matter and Bioaerosols
Researchers have been studying the respiratory health effects of ambient air pollution for more than 70 years. While air pollution as a whole can include gaseous, solid, and liquid constituents, this article focuses only on the solid and liquid fractions, termed particulate matter (PM). Although PM may contain anthropogenic, geogenic, and/or biogenic fractions, in this article, particles that originate from microbial, fungal, animal, or plant sources are distinguished from PM as bioaerosols. Many advances have been made toward understanding which particle and exposure characteristics most influence deposition and clearance processes in the respiratory tract. These characteristics include particle size, shape, charge, and composition as well as the exposure concentration and dose rate. Exposure to particles has been directly associated with the exacerbation and, under certain circumstances, onset of respiratory disease. The circumstances of exposure leading to disease are dependent on stressors such as human activity level and changing particle composition in the environment. Historically, researchers assumed that bioaerosols were too large to be inhaled into the deep lung, and thus, not applicable for study in conjunction with PM2.5 (the 2.5-μm and below size fraction that can reach the deep lung); however, this concept is beginning to be challenged. While there is extensive research on the health effects of PM and bioaerosols independent of each other, only limited work has been performed on their coexposure. Studying these two particle types as dual stressors to the respiratory system may aid in more thoroughly understanding the etiology of respiratory injury and disease. © 2020 American Physiological Society. Compr Physiol 10:1-20, 2020
Nanoparticles, lung injury, and the role of oxidant stress.
The emergence of engineered nanoscale materials has provided significant advancements in electronic, biomedical, and material science applications. Both engineered nanoparticles and nanoparticles derived from combustion or incidental processes exhibit a range of physical and chemical properties that induce inflammation and oxidative stress in biological systems. Oxidative stress reflects the imbalance between the generation of reactive oxygen species and the biochemical mechanisms to detoxify and repair the damage resulting from reactive intermediates. This review examines current research on incidental and engineered nanoparticles in terms of their health effects on lungs and the mechanisms by which oxidative stress via physicochemical characteristics influences toxicity or biocompatibility. Although oxidative stress has generally been thought of as an adverse biological outcome, this review also briefly discusses some of the potential emerging technologies to use nanoparticle-induced oxidative stress to treat disease in a site-specific fashion
Review and Evaluation of the Potential Health Effects of Oxidic Nickel Nanoparticles
The exceptional physical and chemical properties of nickel nanomaterials have been exploited in a range of applications such as electrical conductors, batteries, and biomaterials. However, it has been suggested that these unique properties may allow for increased bioavailability, bio-reactivity, and potential adverse health effects. Thus, the purpose of this review was to critically evaluate data regarding the toxicity of oxidic nickel nanoparticles (nickel oxide (NiO) and nickel hydroxide (Ni(OH)2) nanoparticles) with respect to: (1) physico-chemistry properties; (2) nanomaterial characterization in the defined delivery media; (3) appropriateness of model system and translation to potential human effects; (4) biodistribution, retention, and clearance; (5) routes and relevance of exposure; and (6) current research data gaps and likely directions of future research. Inhalation studies were prioritized for review as this represents a potential exposure route in humans. Oxidic nickel particle size ranged from 5 to 100 nm in the 60 studies that were identified. Inflammatory responses induced by exposure of oxidic nickel nanoparticles via inhalation in rodent studies was characterized as acute in nature and only displayed chronic effects after relatively large (high concentration and long duration) exposures. Furthermore, there is no evidence, thus far, to suggest that the effects induced by oxidic nickel nanoparticles are related to preneoplastic events. There are some data to suggest that nano- and micron-sized NiO particles follow a similar dose response when normalized to surface area. However, future experiments need to be conducted to better characterize the exposure–dose–response relationship according to specific surface area and reactivity as a dose metric, which drives particle dissolution and potential biological responses
Recommended from our members
Application of High-Resolution Mass Spectrometry and a Theoretical Model to the Quantification of Multifunctional Carbonyls and Organic Acids in e-Cigarette Aerosol.
Electronic (e-) cigarette aerosol (particle and gas) is a complex mixture of chemicals, of which the profile is highly dependent on device operating parameters and e-liquid flavor formulation. The thermal degradation of the e-liquid solvents propylene glycol and glycerol often generates multifunctional carbonyls that are challenging to quantify because of unavailability of standards. We developed a theoretical method to calculate the relative electrospray ionization sensitivities of hydrazones of organic acids and carbonyls with 2,4-dinitrophenylhydrazine based on their gas-phase basicities (ΔGdeprotonation). This method enabled quantification by high-performance liquid chromatography-high-resolution mass spectrometry HPLC-HRMS in the absence of chemical standards. Accurate mass and tandem multistage MS (MSn) were used for structure identification of vaping products. We quantified five simple carbonyls, six hydroxycarbonyls, four dicarbonyls, three acids, and one phenolic carbonyl in the e-cigarette aerosol with Classic Tobacco flavor. Our results suggest that hydroxycarbonyls, such as hydroxyacetone, lactaldehyde, and dihydroxyacetone can be significant components in e-cigarette aerosols but have received less attention in the literature and have poorly understood health effects. The data support the radical-mediated e-liquid thermal degradation scheme that has been previously proposed and emphasize the need for more research on the chemistry and toxicology of the complex product formation in e-cigarette aerosols
Recommended from our members
Application of High-Resolution Mass Spectrometry and a Theoretical Model to the Quantification of Multifunctional Carbonyls and Organic Acids in e-Cigarette Aerosol.
Electronic (e-) cigarette aerosol (particle and gas) is a complex mixture of chemicals, of which the profile is highly dependent on device operating parameters and e-liquid flavor formulation. The thermal degradation of the e-liquid solvents propylene glycol and glycerol often generates multifunctional carbonyls that are challenging to quantify because of unavailability of standards. We developed a theoretical method to calculate the relative electrospray ionization sensitivities of hydrazones of organic acids and carbonyls with 2,4-dinitrophenylhydrazine based on their gas-phase basicities (ΔGdeprotonation). This method enabled quantification by high-performance liquid chromatography-high-resolution mass spectrometry HPLC-HRMS in the absence of chemical standards. Accurate mass and tandem multistage MS (MSn) were used for structure identification of vaping products. We quantified five simple carbonyls, six hydroxycarbonyls, four dicarbonyls, three acids, and one phenolic carbonyl in the e-cigarette aerosol with Classic Tobacco flavor. Our results suggest that hydroxycarbonyls, such as hydroxyacetone, lactaldehyde, and dihydroxyacetone can be significant components in e-cigarette aerosols but have received less attention in the literature and have poorly understood health effects. The data support the radical-mediated e-liquid thermal degradation scheme that has been previously proposed and emphasize the need for more research on the chemistry and toxicology of the complex product formation in e-cigarette aerosols
Recommended from our members
Impact of e-Liquid Composition, Coil Temperature, and Puff Topography on the Aerosol Chemistry of Electronic Cigarettes.
E-cigarette aerosol is a complex mixture of gases and particles with a composition that is dependent on the e-liquid formulation, puffing regimen, and device operational parameters. This work investigated mainstream aerosols from a third generation device, as a function of coil temperature (315-510 °F, or 157-266 °C), puff duration (2-4 s), and the ratio of propylene glycol (PG) to vegetable glycerin (VG) in e-liquid (100:0-0:100). Targeted and untargeted analyses using liquid chromatography high-resolution mass spectrometry, gas chromatography, in situ chemical ionization mass spectrometry, and gravimetry were used for chemical characterizations. PG and VG were found to be the major constituents (>99%) in both phases of the aerosol. Most e-cigarette components were observed to be volatile or semivolatile under the conditions tested. PG was found almost entirely in the gas phase, while VG had a sizable particle component. Nicotine was only observed in the particle phase. The production of aerosol mass and carbonyl degradation products dramatically increased with higher coil temperature and puff duration, but decreased with increasing VG fraction in the e-liquid. An exception is acrolein, which increased with increasing VG. The formation of carbonyls was dominated by the heat-induced dehydration mechanism in the temperature range studied, yet radical reactions also played an important role. The findings from this study identified open questions regarding both pathways. The vaping process consumed PG significantly faster than VG under all tested conditions, suggesting that e-liquids become more enriched in VG and the exposure to acrolein significantly increases as vaping continues. It can be estimated that a 30:70 initial ratio of PG:VG in the e-liquid becomes almost entirely VG when 60-70% of e-liquid remains during the vaping process at 375 °F (191 °C). This work underscores the need for further research on the puffing lifecycle of e-cigarettes
Recommended from our members
Quantification of Free Radicals from Vaping Electronic Cigarettes Containing Nicotine Salt Solutions with Different Organic Acid Types and Concentrations.
Electronic (e-) cigarette formulations containing nicotine salts from a range of organic acid conjugates and pH values have dominated the commercial market. The acids in the nicotine salt formulations may alter the redox environment in e-cigarettes, impacting free radical formation in e-cigarette aerosol. Here, the generation of aerosol mass and free radicals from a fourth-generation e-cigarette device was evaluated at 2 wt % nicotine salts (pH 7, 30:70 mixture propylene glycol to vegetable glycerin) across eight organic acids used in e-liquids: benzoic acid (BA), salicylic acid (SLA), lactic acid (LA), levulinic acid (LVA), succinic acid (SA), malic acid (MA), tartaric acid (TA), and citric acid (CA). Furthermore, 2 wt % BA nicotine salts were studied at the following nicotine to acid ratios: 1:2 (pH 4), 1:1 (pH 7), and 2:1 (pH 8), in comparison with freebase nicotine (pH 10). Radical yields were quantified by spin-trapping and electron paramagnetic resonance (EPR) spectroscopy. The EPR spectra of free radicals in the nicotine salt aerosol matched those generated from the Fenton reaction, which are primarily hydroxyl (OH) radicals and other reactive oxygen species (ROS). Although the aerosol mass formation was not significantly different for most of the tested nicotine salts and acid concentrations, notable ROS yields were observed only from BA, CA, and TA under the study conditions. The e-liquids with SLA, LA, LVA, SA, and MA produced less ROS than the 2 wt % freebase nicotine e-liquid, suggesting that organic acids may play dual roles in the production and scavenging of ROS. For BA nicotine salts, it was found that the ROS yield increased with a higher acid concentration (or a lower nicotine to acid ratio). The observation that BA nicotine salts produce the highest ROS yield in aerosol generated from a fourth-generation vape device, which increases with acid concentration, has important implications for ROS-mediated health outcomes that may be relevant to consumers, manufacturers, and regulatory agencies
Nanoparticles, Lung Injury, and the Role of Oxidant Stress
The emergence of engineered nanoscale materials has provided significant advancements in electronic, biomedical, and material science applications. Both engineered nanoparticles and nanoparticles derived from combustion or incidental processes exhibit a range of physical and chemical properties, which have been shown to induce inflammation and oxidative stress in biologic systems. Oxidative stress reflects the imbalance between the generation of reaction oxygen species (ROS) and the biochemical mechanisms to detoxify and repair resulting damage of reactive intermediates. This review examines current research incidental and engineered nanoparticles in terms of their health effects on the lungs and mechanisms by which oxidative stress via physicochemical characteristics influence toxicity or biocompatibility. Although oxidative stress has generally been thought of as an adverse biological outcome, this review will also briefly discuss some of the potential emerging technologies to use nanoparticle-induced oxidative stress to treat disease in a site specific fashion