49 research outputs found
CMB-S4: Forecasting Constraints on Primordial Gravitational Waves
CMB-S4---the next-generation ground-based cosmic microwave background (CMB)
experiment---is set to significantly advance the sensitivity of CMB
measurements and enhance our understanding of the origin and evolution of the
Universe, from the highest energies at the dawn of time through the growth of
structure to the present day. Among the science cases pursued with CMB-S4, the
quest for detecting primordial gravitational waves is a central driver of the
experimental design. This work details the development of a forecasting
framework that includes a power-spectrum-based semi-analytic projection tool,
targeted explicitly towards optimizing constraints on the tensor-to-scalar
ratio, , in the presence of Galactic foregrounds and gravitational lensing
of the CMB. This framework is unique in its direct use of information from the
achieved performance of current Stage 2--3 CMB experiments to robustly forecast
the science reach of upcoming CMB-polarization endeavors. The methodology
allows for rapid iteration over experimental configurations and offers a
flexible way to optimize the design of future experiments given a desired
scientific goal. To form a closed-loop process, we couple this semi-analytic
tool with map-based validation studies, which allow for the injection of
additional complexity and verification of our forecasts with several
independent analysis methods. We document multiple rounds of forecasts for
CMB-S4 using this process and the resulting establishment of the current
reference design of the primordial gravitational-wave component of the Stage-4
experiment, optimized to achieve our science goals of detecting primordial
gravitational waves for at greater than , or, in the
absence of a detection, of reaching an upper limit of at CL.Comment: 24 pages, 8 figures, 9 tables, submitted to ApJ. arXiv admin note:
text overlap with arXiv:1907.0447
CMB-S4: Forecasting Constraints on Primordial Gravitational Waves
Abstract: CMB-S4âthe next-generation ground-based cosmic microwave background (CMB) experimentâis set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2â3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5Ï, or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL
Macromol. Biosci. 9/2011
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86794/1/11110_ftp.pd
A thermodynamic approach to surface modification of calcium phosphate implants by phosphate evaporation and condensation
It has been reported in the literature that thermal treatment of calcium phosphate ceramics chemically alters the surface composition by phosphate evaporation. To predict the compositional changes, we have developed a thermodynamic model for the evaporation of phosphorous species from CPP, TCP, HA, and TetCP. In an open atmosphere, the model predicts the formation of a surface layer consisting of a sequence of increasingly phosphate-depleted phases. In a closed system, the atmosphere reaches equilibrium with a single-phase surface layer. To verify our model, we performed a series of experiments which confirmed the predicted formation of phosphate-depleted surface layers. These experiments further demonstrated that controlled supersaturation of the atmosphere led to formation of a phosphate-enriched surface layer as a result of phosphate condensation. In conclusion, our thermodynamic model is capable of predicting the surface modification by phosphate evaporation and condensation of calcium phosphate phases during high-temperature processing in different environments
Improving visualization of the cervix during pelvic exams: A simulation using a physical model of the speculum and human vagina as a steppingstone to reducing disparities in gynecological cancers.
Pelvic exams are frequently complicated by collapse of the lateral vaginal walls, obstructing the view of the cervix. To overcome this, physicians frequently repurpose a glove or a condom as a sheath placed over the speculum blades to retract the lateral vaginal walls. Despite their regular use in clinical practice, little research has been done comparing the relative efficacy of these methods. Better visualization of the cervix can benefit patients by decreasing examination-related discomfort, improving cancer screening accuracy, and preventing the need to move the examination to the operating room under general anesthesia. This study presents a physical model that simulates vaginal pressure being exerted around a speculum. Using it, we conduct controlled experiments comparing the efficacy of different condom types, glove materials, glove sizes, and techniques to place gloves on the speculum. The results show that the best sheath is the middle finger of nitrile-material gloves. They provide adequate lateral wall retraction without significantly restricting the opening of the speculum. In comparison, condoms provide a smaller amount of retraction due to loosely fitting the speculum. They may still be a reasonable option for a different speculum size. However, vinyl-material gloves are an impractical option for sheaths; they greatly restrict speculum opening, occasionally even breaking the speculum, which overcome its retraction benefits. Glove size, condom brand, and condom material (latex vs polyisoprene) had minimal impact. This study serves as a guide for clinicians as they use easily accessible tools to perform difficult pelvic exams. We recommend that physicians consider nitrile gloves as the preferred option for a sheath around a speculum. Additionally, this study demonstrates proof-of-concept of a physical model that quantitatively describes different materials on their ability to improve cervical access. This model can be used in future research with more speculum and material combinations, including with materials custom-designed for vaginal retraction
Differences in Morphology and Traction Generation of Cell Lines Representing Different Stages of Osteogenesis
International audienceOsteogenesis is the process by which mesenchymal stem cells differentiate to osteoblasts and form bone. The morphology and root mean squared (RMS) traction of four cell types representing different stages of osteogenesis were quantified. Undifferentiated D1, differentiated D1, MC3T3-E1, and MLO-A5 cell types were evaluated using both automated image analysis of cells stained for F-actin and by traction force microscopy (TFM). Undifferentiated mesenchymal stem cell lines were small, spindly, and exerted low traction, while differentiated osteoblasts were large, had multiple processes, and exerted higher traction. Size, shape, and traction all correlated with the differentiation stage. Thus, cell morphology evolved and RMS traction increased with differentiation. The results provide a foundation for further work with these cell lines to study the mechanobiology of bone formation.FIGURES IN THIS ARTICL
Materials, software, and tools used in our experiments.
Materials, software, and tools used in our experiments.</p