10 research outputs found

    Rejuvenation solution as an adjunct cold storage solution maintains physiological haemoglobin oxygen affinity during early‐storage period of red blood cells

    Full text link
    BackgroundRed blood cell (RBC) units accumulate morphologic and metabolic lesions during storage before transfusion. Pyruvate–inosine–phosphate–adenine (PIPA) solutions (Rejuvesol, Biomet, Warsaw, IN) can be incubated with RBC units to mitigate storage lesions. This study proposes a PIPA treatment process, termed cold ‘rejuvenation’, using Rejuvesol as an adjunct additive solution, to prevent biomechanical storage lesions while avoiding the 1 h PIPA incubation required with standard PIPA treatment. We compared the efficacy of cold to standard ‘rejuvenation’ in improving metabolic lesions that occur during cold storage of RBCs, without altering function.MethodsTwelve leucoreduced, A‐positive RBC units were obtained. Each unit was aliquoted into either control (standard storage), washed (W), standard rejuvenation (SR) or cold rejuvenation (CR) groups, the latter two requiring washing. A volume‐adjusted dose of Rejuvesol was instilled into the CR group upon receipt (Day 3). After 15 days of storage, p50, RBC deformability, in‐bag haemolysis and mechanical fragility were analysed. ‘Any treatment’ is defined as W, SR and CR, with comparisons in reference to control.ResultsHigher p50s were seen in rejuvenated groups (>30 mmHg vs. <19 mmHg; P < 0·0001). Any treatment significantly increased elongation index (P = 0·034) but did not significantly increase in‐bag haemolysis (P = 0·062). Mechanical fragility was not significantly different between groups (P = 0·055) at baseline, but the control (CTL) group was more fragile after 2 h in a cardiac bypass simulation than any treatment (P < 0·0001).ConclusionsThis study demonstrates that rejuvenation (standard or cold) prevents the leftward p50 shift of storage lesions without detrimental effect on RBC deformity, in‐bag haemolysis or mechanical fragility.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156162/2/vox12910_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156162/1/vox12910.pd

    Rejuvenation solution as an adjunct cold storage solution maintains physiological haemoglobin oxygen affinity during early‐storage period of red blood cells

    Full text link
    BackgroundRed blood cell (RBC) units accumulate morphologic and metabolic lesions during storage before transfusion. Pyruvate–inosine–phosphate–adenine (PIPA) solutions (Rejuvesol, Biomet, Warsaw, IN) can be incubated with RBC units to mitigate storage lesions. This study proposes a PIPA treatment process, termed cold ‘rejuvenation’, using Rejuvesol as an adjunct additive solution, to prevent biomechanical storage lesions while avoiding the 1 h PIPA incubation required with standard PIPA treatment. We compared the efficacy of cold to standard ‘rejuvenation’ in improving metabolic lesions that occur during cold storage of RBCs, without altering function.MethodsTwelve leucoreduced, A‐positive RBC units were obtained. Each unit was aliquoted into either control (standard storage), washed (W), standard rejuvenation (SR) or cold rejuvenation (CR) groups, the latter two requiring washing. A volume‐adjusted dose of Rejuvesol was instilled into the CR group upon receipt (Day 3). After 15 days of storage, p50, RBC deformability, in‐bag haemolysis and mechanical fragility were analysed. ‘Any treatment’ is defined as W, SR and CR, with comparisons in reference to control.ResultsHigher p50s were seen in rejuvenated groups (>30 mmHg vs. <19 mmHg; P < 0·0001). Any treatment significantly increased elongation index (P = 0·034) but did not significantly increase in‐bag haemolysis (P = 0·062). Mechanical fragility was not significantly different between groups (P = 0·055) at baseline, but the control (CTL) group was more fragile after 2 h in a cardiac bypass simulation than any treatment (P < 0·0001).ConclusionsThis study demonstrates that rejuvenation (standard or cold) prevents the leftward p50 shift of storage lesions without detrimental effect on RBC deformity, in‐bag haemolysis or mechanical fragility.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156162/2/vox12910_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156162/1/vox12910.pd

    Climate-Based Modeling and Prediction of Rice Gall Midge Populations Using Count Time Series and Machine Learning Approaches

    Full text link
    The Asian rice gall midge (Orseolia oryzae (Wood-Mason)) is a major insect pest in rice cultivation. Therefore, development of a reliable system for the timely prediction of this insect would be a valuable tool in pest management. In this study, occurring between the period from 2013–2018: (i) gall midge populations were recorded using a light trap with an incandescent bulb, and (ii) climatological parameters (air temperature, air relative humidity, rainfall and insulations) were measured at four intensive rice cropping agroecosystems that are endemic for gall midge incidence in India. In addition, weekly cumulative trapped gall midge populations and weekly averages of climatological data were subjected to count time series (Integer-valued Generalized Autoregressive Conditional Heteroscedastic—INGARCH) and machine learning (Artificial Neural Network—ANN, and Support Vector Regression—SVR) models. The empirical results revealed that the ANN with exogenous variable (ANNX) model outperformed INGRACH with exogenous variable (INGRCHX) and SVR with exogenous variable (SVRX) models in the prediction of gall midge populations in both training and testing data sets. Moreover, the Diebold–Mariano (DM) test confirmed the significant superiority of the ANNX model over INGARCHX and SVRX models in modeling and predicting rice gall midge populations. Utilizing the presented efficient early warning system based on a robust statistical model to predict the build-up of gall midge population could greatly contribute to the design and implementation of both proactive and more sustainable site-specific pest management strategies to avoid significant rice yield losses

    Not Available

    Full text link
    Not AvailableThe Asian rice gall midge (Orseolia oryzae (Wood-Mason)) is a major insect pest in rice cultivation. Therefore, development of a reliable system for the timely prediction of this insect would be a valuable tool in pest management. In this study, occurring between the period from 2013–2018: (i) gall midge populations were recorded using a light trap with an incandescent bulb, and (ii) climatological parameters (air temperature, air relative humidity, rainfall and insulations) were measured at four intensive rice cropping agroecosystems that are endemic for gall midge incidence in India. In addition, weekly cumulative trapped gall midge populations and weekly averages of climatological data were subjected to count time series (Integer-valued Generalized Autoregressive Conditional Heteroscedastic—INGARCH) and machine learning (Artificial Neural Network—ANN, and Support Vector Regression—SVR) models. The empirical results revealed that the ANN with exogenous variable (ANNX) model outperformed INGRACH with exogenous variable (INGRCHX) and SVR with exogenous variable (SVRX) models in the prediction of gall midge populations in both training and testing data sets. Moreover, the Diebold–Mariano (DM) test confirmed the significant superiority of the ANNX model over INGARCHX and SVRX models in modeling and predicting rice gall midge populations. Utilizing the presented efficient early warning system based on a robust statistical model to predict the build-up of gall midge population could greatly contribute to the design and implementation of both proactive and more sustainable site-specific pest management strategies to avoid significant rice yield losses.Not Availabl

    Should modulation of p50 be a therapeutic target in the critically ill?

    Full text link
    INTRODUCTION: A defining feature of human hemoglobin is its oxygen binding affinity, quantified by the partial pressure of oxygen at which hemoglobin is 50% saturated (p50), and the variability of this parameter over a range of physiological and environmental states. Modulation of this property of hemoglobin can directly affect the degree of peripheral oxygen offloading and tissue oxygenation. AREAS COVERED: This review summarizes the role of hemoglobin oxygen affinity in normal and abnormal physiology and discusses the current state of the literature regarding artificial modulation of p50. Hypoxic tumors, sickle cell disease, heart failure, and transfusion medicine are discussed in the context of recent advances in hemoglobin oxygen affinity manipulation. EXPERT COMMENTARY: Of particular clinical interest is the possibility of maintaining adequate end-organ oxygen availability in patients with anemia or compromised cardiac function via an increase in systemic p50. This increase in systemic p50 can be achieved with small molecule drugs or a packed red blood cell unit processing variant called rejuvenation, and human trials are needed to better understand the potential clinical benefits to modulating p50

    Enzyme assisted extraction of biomolecules as an approach to novel extraction technology: A review

    Full text link
    corecore