531 research outputs found

    Dependence of X-Ray Burst Models on Nuclear Reaction Rates

    Full text link
    X-ray bursts are thermonuclear flashes on the surface of accreting neutron stars and reliable burst models are needed to interpret observations in terms of properties of the neutron star and the binary system. We investigate the dependence of X-ray burst models on uncertainties in (p,γ\gamma), (α\alpha,γ\gamma), and (α\alpha,p) nuclear reaction rates using fully self-consistent burst models that account for the feedbacks between changes in nuclear energy generation and changes in astrophysical conditions. A two-step approach first identified sensitive nuclear reaction rates in a single-zone model with ignition conditions chosen to match calculations with a state-of-the-art 1D multi-zone model based on the {\Kepler} stellar evolution code. All relevant reaction rates on neutron deficient isotopes up to mass 106 were individually varied by a factor of 100 up and down. Calculations of the 84 highest impact reaction rate changes were then repeated in the 1D multi-zone model. We find a number of uncertain reaction rates that affect predictions of light curves and burst ashes significantly. The results provide insights into the nuclear processes that shape X-ray burst observables and guidance for future nuclear physics work to reduce nuclear uncertainties in X-ray burst models.Comment: 24 pages, 13 figures, 4 tables, submitte

    Coherent Population Trapping with Controlled Interparticle Interactions

    Full text link
    We investigate Coherent Population Trapping in a strongly interacting ultracold Rydberg gas. Despite the strong van der Waals interactions and interparticle correlations, we observe the persistence of a resonance with subnatural linewidth at the single-particle resonance frequency as we tune the interaction strength. This narrow resonance cannot be understood within a meanfield description of the strong Rydberg--Rydberg interactions. Instead, a many-body density matrix approach, accounting for the dynamics of interparticle correlations, is shown to reproduce the observed spectral features

    Observation of the transition from lasing driven by a bosonic to a fermionic reservoir in a GaAs quantum well microcavity

    Get PDF
    We show that by monitoring the free carrier reservoir in a GaAs-based quantum well microcavity under non-resonant pulsed optical pumping, lasing supported by a fermionic reservoir (photon lasing) can be distinguished from lasing supported by a reservoir of bosons (polariton lasing). Carrier densities are probed by measuring the photocurrent between lateral contacts deposited directly on the quantum wells of a microcavity that are partially exposed by wet chemical etching. We identify two clear thresholds in the input-output characteristic of the photoluminescence signal which can be attributed to polariton and photon lasing, respectively. The power dependence of the probed photocurrent shows a distinct kink at the threshold power for photon lasing due to increased radiative recombination of free carriers as stimulated emission into the cavity mode sets in. At the polariton lasing threshold on the other hand, the nonlinear increase of the luminescence is caused by stimulated scattering of exciton-polaritons to the ground state which do not contribute directly to the photocurrent.PostprintPeer reviewe

    Prototype of a bistable polariton field-effect transistor switch

    Get PDF
    This work has been supported by the State of Bavaria.Microcavity exciton polaritons are promising candidates to build a new generation of highly nonlinear and integrated optoelectronic devices. Such devices range from novel coherent light emitters to reconfigurable potential landscapes for electrooptical polariton-lattice based quantum simulators as well as building blocks of optical logic architectures. Especially for the latter, the strongly interacting nature of the light-matter hybrid particles has been used to facilitate fast and efficient switching of light by light, something which is very hard to achieve with weakly interacting photons. We demonstrate here that polariton transistor switches can be fully integrated in electro-optical schemes by implementing a one-dimensional polariton channel which is operated by an electrical gate rather than by a control laser beam. The operation of the device, which is the polariton equivalent to a field-effect transistor, relies on combining electro-optical potential landscape engineering with local exciton ionization to control the scattering dynamics underneath the gate. We furthermore demonstrate that our device has a region of negative differential resistance and features a completely new way to create bistable behavior.Publisher PDFPeer reviewe

    Optical probing of the Coulomb interactions of an electrically pumped polariton condensate

    Get PDF
    The authors would like to thank the State of Bavaria for financial support. SM and TL were supported by the NAP Start-Up grant M4081630 and MOE AcRF Tier 1 grant 2016-T1-001-084.We report on optical probing of the Coulomb interactions in an electrically driven exciton-polariton laser. By positioning a weak non-resonant Gaussian continuous wave-beam with a diameter of 2 μm inside an electrical condensate excited in a 20 μm diameter micropillar, we study a repulsion effect which is characteristic of the part-excitonic nature of the microcavity system in strong coupling. It manifests itself in a modified real space distribution of the emission pattern. Furthermore, polariton repulsion results in a continuous blueshift of the emission with increased power of the probe beam. A Gross-Pitaevskii equation approach based on modeling the electrical and optical potentials explains our experimental data.PostprintPeer reviewe

    Phase diagrams of magnetopolariton gases

    Full text link
    The magnetic field effect on phase transitions in electrically neutral bosonic systems is much less studied than those in fermionic systems, such as superconducting or ferromagnetic phase transitions. Nevertheless, composite bosons are strongly sensitive to magnetic fields: both their internal structure and motion as whole particles may be affected. A joint effort of ten laboratories has been focused on studies of polariton lasers, where non-equilibrium Bose-Einstein condensates of bosonic quasiparticles, exciton-polaritons, may appear or disappear under an effect of applied magnetic fields. Polariton lasers based on pillar or planar microcavities were excited both optically and electrically. In all cases a pronounced dependence of the onset to lasing on the magnetic field has been observed. For the sake of comparison, photon lasing (lasing by an electron-hole plasma) in the presence of a magnetic field has been studied on the same samples as polariton lasing. The threshold to photon lasing is essentially governed by the excitonic Mott transition which appears to be sensitive to magnetic fields too. All the observed experimental features are qualitatively described within a uniform model based on coupled diffusion equations for electrons, holes and excitons and the Gross-Pitaevskii equation for exciton-polariton condensates. Our research sheds more light on the physics of non-equilibrium Bose-Einstein condensates and the results manifest high potentiality of polariton lasers for spin-based quantum logic applications.Comment: 21 pages, 11 figure

    Adiabatic Formation of Rydberg Crystals with Chirped Laser Pulses

    Full text link
    Ultracold atomic gases have been used extensively in recent years to realize textbook examples of condensed matter phenomena. Recently, phase transitions to ordered structures have been predicted for gases of highly excited, 'frozen' Rydberg atoms. Such Rydberg crystals are a model for dilute metallic solids with tunable lattice parameters, and provide access to a wide variety of fundamental phenomena. We investigate theoretically how such structures can be created in four distinct cold atomic systems, by using tailored laser-excitation in the presence of strong Rydberg-Rydberg interactions. We study in detail the experimental requirements and limitations for these systems, and characterize the basic properties of small crystalline Rydberg structures in one, two and three dimensions.Comment: 23 pages, 10 figures, MPIPKS-ITAMP Tandem Workshop, Cold Rydberg Gases and Ultracold Plasmas (CRYP10), Sept. 6-17, 201

    Optical studies for the super separator spectrometer S3

    Get PDF
    International audienceS3 (Super Separator Spectrometer) [1] is a future device designed for experiments with the high intensity heavy ion stable beams of SPIRAL2 [2] at GANIL (Caen, France). It will include a target resistant to these very high intensities, a first stage momentum achromat for primary beam extraction and suppression, a second stage mass spectrometer and a dedicated detection system. This spectrometer includes large aperture quadrupole triplets with embedded multipolar corrections. To enable the primary beam extraction one triplet has to be opened on one side, which requires an appropriate design of such a multipolar magnet. The final mass separation power required for S3 needs a careful design of the optics with a high level of aberration correction. Multiple symmetric lattices were studied for this purpose. A 4-fold symmetric lattice and the achieved results are described in this paper

    TOF-Brho Mass Measurements of Very Exotic Nuclides for Astrophysical Calculations at the NSCL

    Full text link
    Atomic masses play a crucial role in many nuclear astrophysics calculations. The lack of experimental values for relevant exotic nuclides triggered a rapid development of new mass measurement devices around the world. The Time-of-Flight (TOF) mass measurements offer a complementary technique to the most precise one, Penning trap measurements, the latter being limited by the rate and half-lives of the ions of interest. The NSCL facility provides a well-suited infrastructure for TOF mass measurements of very exotic nuclei. At this facility, we have recently implemented a TOF-Brho technique and performed mass measurements of neutron-rich nuclides in the Fe region, important for r-process calculations and for calculations of processes occurring in the crust of accreting neutron stars.Comment: 8 pages, 4 figures, submitted to Journal of Physics G, proceedings of Nuclear Physics in Astrophysics II
    corecore