46 research outputs found
A Rejoinder on Energy versus Impact Indicators
Citation distributions are so skewed that using the mean or any other central
tendency measure is ill-advised. Unlike G. Prathap's scalar measures (Energy,
Exergy, and Entropy or EEE), the Integrated Impact Indicator (I3) is based on
non-parametric statistics using the (100) percentiles of the distribution.
Observed values can be tested against expected ones; impact can be qualified at
the article level and then aggregated.Comment: Scientometrics, in pres
Identifying Overlapping and Hierarchical Thematic Structures in Networks of Scholarly Papers: A Comparison of Three Approaches
We implemented three recently proposed approaches to the identification of
overlapping and hierarchical substructures in graphs and applied the
corresponding algorithms to a network of 492 information-science papers coupled
via their cited sources. The thematic substructures obtained and overlaps
produced by the three hierarchical cluster algorithms were compared to a
content-based categorisation, which we based on the interpretation of titles
and keywords. We defined sets of papers dealing with three topics located on
different levels of aggregation: h-index, webometrics, and bibliometrics. We
identified these topics with branches in the dendrograms produced by the three
cluster algorithms and compared the overlapping topics they detected with one
another and with the three pre-defined paper sets. We discuss the advantages
and drawbacks of applying the three approaches to paper networks in research
fields.Comment: 18 pages, 9 figure
Actors and networks or agents and structures: towards a realist view of information systems
Actor-network theory (ANT) has achieved a measure of popularity in the analysis of information systems. This paper looks at ANT from the perspective of the social realism of Margaret Archer. It argues that the main issue with ANT from a realist perspective is its adoption of a `flat' ontology, particularly with regard to human beings. It explores the value of incorporating concepts from ANT into a social realist approach, but argues that the latter offers a more productive way of approaching information systems
How citation boosts promote scientific paradigm shifts and Nobel Prizes
Nobel Prizes are commonly seen to be among the most prestigious achievements
of our times. Based on mining several million citations, we quantitatively
analyze the processes driving paradigm shifts in science. We find that
groundbreaking discoveries of Nobel Prize Laureates and other famous scientists
are not only acknowledged by many citations of their landmark papers.
Surprisingly, they also boost the citation rates of their previous
publications. Given that innovations must outcompete the rich-gets-richer
effect for scientific citations, it turns out that they can make their way only
through citation cascades. A quantitative analysis reveals how and why they
happen. Science appears to behave like a self-organized critical system, in
which citation cascades of all sizes occur, from continuous scientific progress
all the way up to scientific revolutions, which change the way we see our
world. Measuring the "boosting effect" of landmark papers, our analysis reveals
how new ideas and new players can make their way and finally triumph in a world
dominated by established paradigms. The underlying "boost factor" is also
useful to discover scientific breakthroughs and talents much earlier than
through classical citation analysis, which by now has become a widespread
method to measure scientific excellence, influencing scientific careers and the
distribution of research funds. Our findings reveal patterns of collective
social behavior, which are also interesting from an attention economics
perspective. Understanding the origin of scientific authority may therefore
ultimately help to explain, how social influence comes about and why the value
of goods depends so strongly on the attention they attract.Comment: 6 pages, 6 figure