21 research outputs found
Risk algorithm using serial biomarker measurements doubles the number of screen-detected cancers compared with a single-threshold rule in the United Kingdom collaborative trial of ovarian cancer screening
PURPOSE: Cancer screening strategies have commonly adopted single-biomarker thresholds to identify abnormality. We investigated the impact of serial biomarker change interpreted through a risk algorithm on cancer detection rates.
PATIENTS AND METHODS: In the United Kingdom Collaborative Trial of Ovarian Cancer Screening, 46,237 women, age 50 years or older underwent incidence screening by using the multimodal strategy (MMS) in which annual serum cancer antigen 125 (CA-125) was interpreted with the risk of ovarian cancer algorithm (ROCA). Women were triaged by the ROCA: normal risk, returned to annual screening; intermediate risk, repeat CA-125; and elevated risk, repeat CA-125 and transvaginal ultrasound. Women with persistently increased risk were clinically evaluated. All participants were followed through national cancer and/or death registries. Performance characteristics of a single-threshold rule and the ROCA were compared by using receiver operating characteristic curves.
RESULTS: After 296,911 women-years of annual incidence screening, 640 women underwent surgery. Of those, 133 had primary invasive epithelial ovarian or tubal cancers (iEOCs). In all, 22 interval iEOCs occurred within 1 year of screening, of which one was detected by ROCA but was managed conservatively after clinical assessment. The sensitivity and specificity of MMS for detection of iEOCs were 85.8% (95% CI, 79.3% to 90.9%) and 99.8% (95% CI, 99.8% to 99.8%), respectively, with 4.8 surgeries per iEOC. ROCA alone detected 87.1% (135 of 155) of the iEOCs. Using fixed CA-125 cutoffs at the last annual screen of more than 35, more than 30, and more than 22 U/mL would have identified 41.3% (64 of 155), 48.4% (75 of 155), and 66.5% (103 of 155), respectively. The area under the curve for ROCA (0.915) was significantly (P = .0027) higher than that for a single-threshold rule (0.869).
CONCLUSION: Screening by using ROCA doubled the number of screen-detected iEOCs compared with a fixed cutoff. In the context of cancer screening, reliance on predefined single-threshold rules may result in biomarkers of value being discarded
The cost-effectiveness of screening for ovarian cancer: results from the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS)
Background: To assess the within trial cost-effectiveness of an NHS ovarian cancer screening (OCS) programme using data from UKCTOCS and extrapolate results based on average life expectancy.
Methods: Within trial economic evaluation of no screening (C) versus either (1) an annual OCS programme using transvaginal ultrasound (USS) or (2) an annual ovarian cancer multimodal screening programme with serum CA125 interpreted using a risk algorithm (ROCA) and transvaginal ultrasound as a second line test (MMS), plus comparison of lifetime extrapolation of the no screening arm and the MMS programme using both a predictive and a Markov model.
Results: Using a CA125-ROCA cost of £20, the within trial results show USS to be strictly dominated by MMS, with the MMS versus C comparison returning an Incremental Cost-Effectiveness ratio (ICER) of £91,452 per life year gained (LYG). If the CA125-ROCA unit cost is reduced to £15 the ICER becomes £77,818 per LYG. Predictive extrapolation over the expected lifetime of the UKCTOCS women returns an ICER of £30,033 per LYG, while Markov modelling produces an ICER of £46,922 per QALY.
Conclusions: Analysis suggests that, after accounting for the lead-time required to establish full mortality benefits, a national OCS programme based on the MMS strategy quickly approaches the current NICE thresholds for cost-effectiveness when extrapolated out to lifetime as compared to the within trial ICER estimates. Whether MMS could be recommended on economic grounds would depend on the confirmation and size of the mortality benefit at the end of an ongoing follow-up of the UKCTOCS cohort
Ovarian cancer screening and mortality in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): a randomised controlled trial
Background Ovarian cancer has a poor prognosis, with just 40% of patients surviving 5 years. We designed this trial
to establish the eff ect of early detection by screening on ovarian cancer mortality.
Methods In this randomised controlled trial, we recruited postmenopausal women aged 50–74 years from 13 centres in
National Health Service Trusts in England, Wales, and Northern Ireland. Exclusion criteria were previous bilateral oophorectomy or ovarian malignancy, increased risk of familial ovarian cancer, and active non-ovarian malignancy. The trial management system confirmed eligibility and randomly allocated participants in blocks of 32 using computergenerated random numbers to annual multimodal screening (MMS) with serum CA125 interpreted with use of the risk of ovarian cancer algorithm, annual transvaginal ultrasound screening (USS), or no screening, in a 1:1:2 ratio. The primary outcome was death due to ovarian cancer by Dec 31, 2014, comparing MMS and USS separately with no screening, ascertained by an outcomes committee masked to randomisation group. All analyses were by modified intention to screen, excluding the small number of women we discovered after randomisation to have a bilateral oophorectomy, have ovarian cancer, or had exited the registry before recruitment. Investigators and participants were aware of screening type. This trial is registered with ClinicalTrials.gov, number NCT00058032.
Findings Between June 1, 2001, and Oct 21, 2005, we randomly allocated 202 638 women: 50 640 (25·0%) to MMS,
50 639 (25·0%) to USS, and 101 359 (50·0%) to no screening. 202 546 (>99·9%) women were eligible for analysis: 50 624 (>99·9%) women in the MMS group, 50 623 (>99·9%) in the USS group, and 101 299 (>99·9%) in the no
screening group. Screening ended on Dec 31, 2011, and included 345 570 MMS and 327 775 USS annual screening
episodes. At a median follow-up of 11·1 years (IQR 10·0–12·0), we diagnosed ovarian cancer in 1282 (0·6%) women:
338 (0·7%) in the MMS group, 314 (0·6%) in the USS group, and 630 (0·6%) in the no screening group. Of these women, 148 (0·29%) women in the MMS group, 154 (0·30%) in the USS group, and 347 (0·34%) in the no screening group had died of ovarian cancer. The primary analysis using a Cox proportional hazards model gave a mortality reduction over years 0–14 of 15% (95% CI –3 to 30; p=0·10) with MMS and 11% (–7 to 27; p=0·21) with USS. The Royston-Parmar fl exible parametric model showed that in the MMS group, this mortality eff ect was made up of 8% (–20 to 31) in years 0–7 and 23% (1–46) in years 7–14, and in the USS group, of 2% (–27 to 26) in years 0–7 and 21% (–2 to 42) in years 7–14. A prespecified analysis of death from ovarian cancer of MMS versus no screening with exclusion of prevalent cases showed significantly diff erent death rates (p=0·021), with an overall average mortality reduction of 20% (–2 to 40) and a reduction of 8% (–27 to 43) in years 0–7 and 28% (–3 to 49) in years 7–14 in favour of MMS.
Interpretation Although the mortality reduction was not signifi cant in the primary analysis, we noted a signifi cant mortality reduction with MMS when prevalent cases were excluded. We noted encouraging evidence of a mortality reduction in years 7–14, but further follow-up is needed before firm conclusions can be reached on the efficacy and cost-eff ectiveness of ovarian cancer screening
Impact on mortality and cancer incidence rates of using random invitation from population registers for recruitment to trials
Background: Participants in trials evaluating preventive interventions such as screening are on average healthier than the general population. To decrease this 'healthy volunteer effect' (HVE) women were randomly invited from population registers to participate in the United Kingdom Collaborative Trial of Ovarian Cancer Screening (UKCTOCS) and not allowed to self refer. This report assesses the extent of the HVE still prevalent in UKCTOCS and considers how certain shortfalls in mortality and incidence can be related to differences in socioeconomic status.Methods: Between 2001 and 2005, 202 638 postmenopausal women joined the trial out of 1 243 312 women randomly invited from local health authority registers. The cohort was flagged for deaths and cancer registrations and mean follow up at censoring was 5.55 years for mortality, and 2.58 years for cancer incidence. Overall and cause-specific Standardised Mortality Ratios (SMRs) and Standardised Incidence Ratios (SIRs) were calculated based on national mortality (2005) and cancer incidence (2006) statistics. The Index of Multiple Deprivation (IMD 2007) was used to assess the link between socioeconomic status and mortality/cancer incidence, and differences between the invited and recruited populations.Results: The SMR for all trial participants was 37%. By subgroup, the SMRs were higher for: younger age groups, extremes of BMI distribution and with each increasing year in trial. There was a clear trend between lower socioeconomic status and increased mortality but less pronounced with incidence. While the invited population had higher mean IMD scores (more deprived) than the national average, those who joined the trial were less deprived.Conclusions: Recruitment to screening trials through invitation from population registers does not prevent a pronounced HVE on mortality. The impact on cancer incidence is much smaller. Similar shortfalls can be expected in other screening RCTs and it maybe prudent to use the various mortality and incidence rates presented as guides for calculating event rates and power in RCTs involving women
The management of predicted ovarian hyperstimulation involving gonadotropin-releasing hormone analog with elective cryopreservation of all pre-embryos
Severe ovarian hyperstimulation syndrome complicates up to 6% of IVF treatment cycles. We have utilized our pre-embryo cryopreservation program to manage incipient ovarian hyperstimulation syndrome in an alternative way. Four women, who were at risk of developing ovarian hyperstimulation syndrome, underwent oocyte retrieval, but not embryo replacement. Instead, resulting pre-embryos were cryopreserved for future transfer. The four patients have since become pregnant. Three conceived after thawed embryo replacement cycles, and the fourth conceived spontaneously 1 month after the stimulation cycle. This approach offers maximum flexibility in the management of ovarian hyperstimulation syndrome
Fluorescein isothiocynate-dextran uptake by chinese hamster ovary cells in a 1.5 MHz ultrasonic standing wave in the presence of contrast agent
Uptake of fluorescein isothiocynate-dextran (FITC-dextran) by Chinese hamster ovary cells was studied after exposure to ultrasonic standing wave (USW) in presence of Optison, an ultrasound contrast agent. Confluent Chinese hamster ovary cells were harvested and suspended in phosphate-buffered saline + 0.1% bovine serum albumin containing FITC-dextran (10, 40, and 500 kDa) at 10 microM final concentration. The suspension was seeded with contrast agent (75 microL/mL) and exposed to a 1.5 MHz USW system at acoustic pressures ranging from 0.98 to 4.2 MPa. Macromolecular uptake was assessed by fluorescent microscopy and quantified by flow cytometry 10 min after exposure. FITC-dextran positive cells, as assessed by flow cytometry, were 1 +/- 0.05% and 2.58 +/- 0.27% for acoustic pressures of 1.96 and 4.2 MPa, respectively (p = 0.006). Fluorescent microscopy indicated a degree of macromolecular loading at 0.98 MPa with 46% of peripherally FITC-dextran- and/or propidium iodide-stained cells coincident with the appearance of significant frequency (f0/2 and 2 f0) emission signals. At higher pressures, high macromolecular loading with 6% peripherally stained cells at 1.96 MPa was associated with lower order emission signals and white noise. The study conclusively demonstrates macromolecular loading in an USW, a significantly higher macromolecular loading at higher pressures and indicates potential of emission signals for a feedback loop to control the acoustic power outputs and fine-tune the biologic effects associated with sonoporation