18 research outputs found
Back to Natural Fiber: Wool Color Influences Its Sensitivity to Enzymatic Treatment
There are many missed biotechnological opportunities in the developmental countries. Wool quality improvement is one of them. This study is concerning with improving the wool quality using technical enzymes. White wool proves to be more susceptible to the enzymatic treatment than blackish brown wool. This proves that the enzymatic reaction is sensitive to the natural color differences between wool fibers. A simple enzymatic method has been used to improve the wool quality as well as to investigate the changes happened in the wool fibers. Geobacillus stearothermophilus has been used under mesophilic and static cultivation conditions using wool as the main carbon source. These conditions prove to be more suitable for maintaining the fiber structure, less expensive, and reliable as an in-house biotechnological process that can be adapted everywhere. The enzyme activity in case of white wool was 4 Units/ml and for blackish brown wool was 1.5 Units/ml. Electron microscope has been used to evaluate the end result. By following the process included in this paper using probable microbial strain(s), the wool quality improvement can be applied globally and can add another value to the economy of the developmental countries
The cientificWorldJOURNAL Research Article Back to Natural Fiber: Wool Color Influences Its Sensitivity to Enzymatic Treatment
There are many missed biotechnological opportunities in the developmental countries. Wool quality improvement is one of them. This study is concerning with improving the wool quality using technical enzymes. White wool proves to be more susceptible to the enzymatic treatment than blackish brown wool. This proves that the enzymatic reaction is sensitive to the natural color differences between wool fibers. A simple enzymatic method has been used to improve the wool quality as well as to investigate the changes happened in the wool fibers. Geobacillus stearothermophilus has been used under mesophilic and static cultivation conditions using wool as the main carbon source. These conditions prove to be more suitable for maintaining the fiber structure, less expensive, and reliable as an in-house biotechnological process that can be adapted everywhere. The enzyme activity in case of white wool was 4 Units/ml and for blackish brown wool was 1.5 Units/ml. Electron microscope has been used to evaluate the end result. By following the process included in this paper using probable microbial strain(s), the wool quality improvement can be applied globally and can add another value to the economy of the developmental countries
Plackett–Burman randomization method for Bacterial Ghosts preparation form E. coli JM109
AbstractPlackett–Burman randomization method is a conventional tool for variables randomization aiming at optimization. Bacterial Ghosts (BGs) preparation has been recently established using methods other than the E lysis gene. The protocol has been based mainly on using critical concentrations from chemical compounds able to convert viable cells to BGs. The Minimum Inhibition Concentration (MIC) and the Minimum Growth Concentration (MGC) were the main guide for the BGs preparation. In this study, Escherichia coli JM109 DEC has been used to produce the BGs following the original protocol. The study contained a detail protocol for BGs preparation that could be used as a guide
PhaC Synthases and PHA Depolymerases: The Enzymes that Produce and Degrade Plastic
PHAs are a group of intracellular biodegradable polymer produced by (most) bacteria under unbalanced growth conditions. A series of enzymes are involved in different PHAs synthesis, however PhaC synthases are responsible for the polymerization step. PHAs are accumulated in bacterial cells from soluble to insoluble form as storage materials inside the inclusion bodies during unbalanced nutrition or to save organisms from reduces equivalents. PHAs are converted again to soluble components by another pathways and enzymes for the degradation process. PHAs depolymerases are the responsible enzymes. This review is designed to give the non-specialists a condense background about PHAs especially for researcher and students in medicinal and pharmaceutical filled.
ABSTRAK: PHAs (polyhydroxyalkanoate) merupakan sekumpulan polimer terbiodegradasikan intrasel yang dihasilkan oleh (kebanyakan) bakteria di bawah keadaan tumbesaran tak seimbang. Satu rangkaian enzim terlibat dalam sistesis PHAs yang berbeza, namun sintesis PhaC bertanggungjawab dalam peringkat pempolimeran. PHAs dikumpulkan dalam sel bakteria dari bentuk larut dan tak larut sebagai bahan simpan di dalam jasad terangkum semasa nutrisi tak seimbang atau untuk menyelamatkan organisma daripada pengurangan tak keseimbangan. PHAs ditukarkan sekali lagi kepada komponen larut dengan cara lain dan enzim lain untuk proses degradasi. PHAs depoly-merases (enzim yang memangkin penguraian makro molekul kepada molekul yang lebih mudah) merupakan enzim yang bertanggunjawab. Kajian semula ini direka untuk memberi mereka yang bukan pakar, satu ringkasan tentang PHAs terutamanya penyelidik dan penuntut dalam bidang peubatan dan farmaseutikal
Sponge-Like: A New Protocol for Preparing Bacterial Ghosts
Bacterial Ghosts (BGs) received an increasing interest in the recent years for their promising medicinal and pharmaceutical applications. In this study, for the first time we introduce a new protocol for BGs production. E. coli BL21 (DE3) pLysS (Promega) was used as a model to establish a general protocol for BGs preparation. The protocol is based on using active chemical compounds in concentrations less than the Minimum Inhibition Concentration (MIC). Those chemical compounds are SDS, NaOH, and H2O2. Plackett-Burman experimental design was used to map the best conditions for BGs production. Normal and electronic microscopes were used to evaluate the BGs quality (BGQ). Spectrophotometer was used to evaluate the amount of the released protein and DNA. Agarose gel electrophoresis was used to determine the existence of any residue of DNA after each BGs preparation. Viable cells, which existed after running this protocol, were subjected to lysis by inducing the lysozyme gene carried on pLysS plasmid. This protocol is able to produce BGs that can be used in different biotechnological applications
Genetic Engineering of Schizosaccharomyces pombe to Produce Bacterial Polyhydroxyalkanotes
A commercial use of microbial produced products, like
polyhydroxyalkanotes (PHAs), in the sense of an environmental
precaution appears meaningful and necessary. In order to more
economically produce microbial products, this investigation was focused
on suitable producers, like the yeast Schizosaccharomyces pombe. Since
it is not capable of the PHA synthesis, easily cultured and they must
be modified genetically. Therefore, the genes of the phb biosynthesis
pathway of Ralstonia eutropha [beta-ketothiolase (phbARe);
acetoacetyl-CoA reductase (phbBRe); as well as phb synthase (phbCRe),
located onto the plasmid pBHR68 were cloned into the cohesive ended
pYIplac128 integrated vector that transformed into the chromosome of
the yeast Schizosaccharomyces pombe strain Q01. Under the optimized
cultivation conditions, the transgenic yeast S. pombe strain Q01/phb
was able to produce phb and accumulated up to 9.018 % phb. The presence
of heterologous DNA in the transgenic yeast was examined by means of
Western blot analysis. In addition, both PHA synthase activity and
kinetics were determined. The UV/Vis, 1H and 13C NMR spectral analysis
have confirmed that the polymer produced by the yeast S. pombe strain
Q01/phb is a pure homopolymer of 3-hydroxybutyric acid
The role of the yeast as probiotic in protection against liver injury
Saccharomyces cerevisiae is a well known yeast used safely from ancient times in many biotechnological applications. Nowadays, there is an increasing interest in using yeast as probiotic. Dimethyl nitrosamine (DMN) has been used to induce liver fibrosis in rats. Yeast has been used side by side with the DMN to evaluate the role of its use as a probiotic in the protection against liver fibrosis. Six groups of rats have been used to represent negative and positive controls and other four groups which have been treated by DMN for two weeks and killed after 35 or 60 days. Two of the DMN treatment groups have been fed by yeast from the first 35 to 60 days, respectively. The results show that yeast has no side effect on each of glutamate-oxaloacetate-transaminase (GOT), glutamate-pyruvate-transaminase (GPT) and alkaline phosphatase (ALP) enzyme activities. DMN showed a significant effect on those enzymes. Feeding with yeast for 35 days showed a minor improvement, while feeding them for 60 days showed a significant improvement. Moreover, the expressions of interleukin 1-alpha (IL-1.) and interleukin-7 receptor (IL-7r) have been evaluated using reverse transcription polymerase chain reaction (RT-PCR). The study includes also the analysis of liver histopathology. This study shows the importance of using yeasts as probiotics in the protection against liver injury.Key words: Yeast, Saccharomyces cerevisiae, probiotic, dimethyl nitrosamine, IL-7r, IL-1.
Replacement of the catalytic nucleophile cysteine-296 by serine in class II polyhydroxyalkanoate synthase from Pseudomonas aeruginosa-mediated synthesis of a new polyester: identification of catalytic residues.
The class II PHA (polyhydroxyalkanoate) synthases [PHA(MCL) synthases (medium-chain-length PHA synthases)] are mainly found in pseudomonads and catalyse synthesis of PHA(MCL)s using CoA thioesters of medium-chain-length 3-hydroxy fatty acids (C6-C14) as a substrate. Only recently PHA(MCL) synthases from Pseudomonas oleovorans and Pseudomonas aeruginosa were purified and in vitro activity was achieved. A threading model of the P. aeruginosa PHA(MCL) synthase PhaC1 was developed based on the homology to the epoxide hydrolase (1ek1) from mouse which belongs to the alpha/beta-hydrolase superfamily. The putative catalytic residues Cys-296, Asp-452, His-453 and His-480 were replaced by site-specific mutagenesis. In contrast to class I and III PHA synthases, the replacement of His-480, which aligns with the conserved base catalyst of the alpha/beta-hydrolases, with Gln did not affect in vivo enzyme activity and only slightly in vitro enzyme activity. The second conserved histidine His-453 was then replaced by Gln, and the modified enzyme showed only 24% of wild-type in vivo activity, which indicated that His-453 might functionally replace His-480 in class II PHA synthases. Replacement of the postulated catalytic nucleophile Cys-296 by Ser only reduced in vivo enzyme activity to 30% of wild-type enzyme activity and drastically changed substrate specificity. Moreover, the C296S mutation turned the enzyme sensitive towards PMSF inhibition. The replacement of Asp-452 by Asn, which is supposed to be required as general base catalyst for elongation reaction, did abolish enzyme activity as was found for the respective amino acid residue of class I and III enzymes. In the threading model residues Cys-296, Asp-452, His-453 and His-480 reside in the core structure with the putative catalytic nucleophile Cys-296 localized at the highly conserved gamma-turns of the alpha/beta-hydrolases. Inhibitor studies indicated that catalytic histidines reside in the active site. The conserved residue Trp-398 was replaced by Phe and Ala, respectively, which caused inactivation of the enzyme indicating an essential role of this residue. In the threading model this residue was found to be surface-exposed. No evidence for post-translational modification by 4-phosphopantetheine was obtained. Overall, these data suggested that in class II PHA synthases the conserved histidine which was found as general base catalyst in the catalytic triad of enzymes related to the alpha/beta-hydrolase superfamily, was functionally replaced by His-453 which is conserved among all PHA synthases
Fungi as a Source of Edible Proteins and Animal Feed
It is expected that the world population will reach 9 billion by 2050. Thus, meat, dairy or plant-based protein sources will fail to meet global demand. New solutions must be offered to find innovative and alternative protein sources. As a natural gift, edible wild mushrooms growing in the wet and shadow places and can be picked by hand have been used as a food. From searching mushrooms in the forests and producing single cell proteins (SCP) in small scales to mega production, academia, United Nations Organizations, industries, political makers and others, play significant roles. Fermented traditional foods have also been reinvestigated. For example, kefir, miso, and tempeh, are an excellent source for fungal isolates for protein production. Fungi have unique criteria of consuming various inexpensive wastes as sources of carbon and energy for producing biomass, protein concentrate or amino acids with a minimal requirement of other environmental resources (e.g., light and water). Fungal fermented foods and SCP are consumed either intentionally or unintentionally in our daily meals and have many applications in food and feed industries. This review addresses fungi as an alternative source of edible proteins and animal feed, focusing mainly on SCP, edible mushrooms, fungal fermented foods, and the safety of their consumption