739 research outputs found

    Back to Natural Fiber: Wool Color Influences Its Sensitivity to Enzymatic Treatment

    Get PDF
    There are many missed biotechnological opportunities in the developmental countries. Wool quality improvement is one of them. This study is concerning with improving the wool quality using technical enzymes. White wool proves to be more susceptible to the enzymatic treatment than blackish brown wool. This proves that the enzymatic reaction is sensitive to the natural color differences between wool fibers. A simple enzymatic method has been used to improve the wool quality as well as to investigate the changes happened in the wool fibers. Geobacillus stearothermophilus has been used under mesophilic and static cultivation conditions using wool as the main carbon source. These conditions prove to be more suitable for maintaining the fiber structure, less expensive, and reliable as an in-house biotechnological process that can be adapted everywhere. The enzyme activity in case of white wool was 4 Units/ml and for blackish brown wool was 1.5 Units/ml. Electron microscope has been used to evaluate the end result. By following the process included in this paper using probable microbial strain(s), the wool quality improvement can be applied globally and can add another value to the economy of the developmental countries

    Successful Biological Invasion despite a Severe Genetic Load

    Get PDF
    Understanding the factors that influence the success of ecologically and economically damaging biological invasions is of prime importance. Recent studies have shown that invasive populations typically exhibit minimal, if any, reductions in genetic diversity, suggesting that large founding populations and/or multiple introductions are required for the success of biological invasions, consistent with predictions of the propagule pressure hypothesis. Through population genetic analysis of neutral microsatellite markers and a gene experiencing balancing selection, we demonstrate that the solitary bee Lasioglossum leucozonium experienced a single and severe bottleneck during its introduction from Europe. Paradoxically, the success of L. leucozonium in its introduced range occurred despite the severe genetic load caused by single-locus complementary sex-determination that still turns 30% of female-destined eggs into sterile diploid males, thereby substantially limiting the growth potential of the introduced population. Using stochastic modeling, we show that L. leucozonium invaded North America through the introduction of a very small number of propagules, most likely a singly-mated female. Our results suggest that chance events and ecological traits of invaders are more important than propagule pressure in determining invasion success, and that the vigilance required to prevent invasions may be considerably greater than has been previously considered

    The cientificWorldJOURNAL Research Article Back to Natural Fiber: Wool Color Influences Its Sensitivity to Enzymatic Treatment

    Get PDF
    There are many missed biotechnological opportunities in the developmental countries. Wool quality improvement is one of them. This study is concerning with improving the wool quality using technical enzymes. White wool proves to be more susceptible to the enzymatic treatment than blackish brown wool. This proves that the enzymatic reaction is sensitive to the natural color differences between wool fibers. A simple enzymatic method has been used to improve the wool quality as well as to investigate the changes happened in the wool fibers. Geobacillus stearothermophilus has been used under mesophilic and static cultivation conditions using wool as the main carbon source. These conditions prove to be more suitable for maintaining the fiber structure, less expensive, and reliable as an in-house biotechnological process that can be adapted everywhere. The enzyme activity in case of white wool was 4 Units/ml and for blackish brown wool was 1.5 Units/ml. Electron microscope has been used to evaluate the end result. By following the process included in this paper using probable microbial strain(s), the wool quality improvement can be applied globally and can add another value to the economy of the developmental countries

    Plackett–Burman randomization method for Bacterial Ghosts preparation form E. coli JM109

    Get PDF
    AbstractPlackett–Burman randomization method is a conventional tool for variables randomization aiming at optimization. Bacterial Ghosts (BGs) preparation has been recently established using methods other than the E lysis gene. The protocol has been based mainly on using critical concentrations from chemical compounds able to convert viable cells to BGs. The Minimum Inhibition Concentration (MIC) and the Minimum Growth Concentration (MGC) were the main guide for the BGs preparation. In this study, Escherichia coli JM109 DEC has been used to produce the BGs following the original protocol. The study contained a detail protocol for BGs preparation that could be used as a guide

    Software tool for processing and selecting objects in infrared images

    Get PDF
    The article describes the scientific problem of processing images obtained in the infrared range. Methods for filtering such images in order to reduce noise are presented. Methods for optimal smoothing are described. A software tool has been developed that allows you to select the desired objects on the processed images.

    Successful Treatment of a Case of Crescentic Glomerulonephritis in a Patient with Primary Peritoneal Carcinoma: A case report

    Get PDF
    Crescentic glomerulonephritis (CGN) has been associated with several solid tumor malignancies. Only a few cases of nephropathy have been reported in association with tubo-ovarian/peritoneal malignancies. We describe a case of 55 years old female who developed combined immune complex-mediated glomerulonephritis and pauci-immune necrotizing crescentic vasculitis simultaneously with the diagnosis of tubo-ovarian/peritoneal cancer. The baseline estimated glomerular filtration rate (eGFR) was 13 ml/min. The patient received two doses of Rituximab and three doses of pulse corticosteroids, leading to significant improvement in renal function and the disappearance of her proteinuria. The eGFR improved to >60ml/min, and her proteinuria gradually resolved after 10 weeks of treatment. She was in a position to be given a combination chemotherapy treatment for tubo-ovarian/peritoneal cancer because of normalization of her CA-125 after three months of therapy. Keywords: tubo-ovarian/peritoneal cancer, Glomerulonephritis, Vasculitis, Chemotherapy

    Robust Control of Quantum Information

    Full text link
    Errors in the control of quantum systems may be classified as unitary, decoherent and incoherent. Unitary errors are systematic, and result in a density matrix that differs from the desired one by a unitary operation. Decoherent errors correspond to general completely positive superoperators, and can only be corrected using methods such as quantum error correction. Incoherent errors can also be described, on average, by completely positive superoperators, but can nevertheless be corrected by the application of a locally unitary operation that ``refocuses'' them. They are due to reproducible spatial or temporal variations in the system's Hamiltonian, so that information on the variations is encoded in the system's spatiotemporal state and can be used to correct them. In this paper liquid-state nuclear magnetic resonance (NMR) is used to demonstrate that such refocusing effects can be built directly into the control fields, where the incoherence arises from spatial inhomogeneities in the quantizing static magnetic field as well as the radio-frequency control fields themselves. Using perturbation theory, it is further shown that the eigenvalue spectrum of the completely positive superoperator exhibits a characteristic spread that contains information on the Hamiltonians' underlying distribution.Comment: 14 pages, 6 figure
    corecore