3 research outputs found

    Gene selection via improved nuclear reaction optimization algorithm for cancer classification in high-dimensional data

    No full text
    Abstract RNA Sequencing (RNA-Seq) has been considered a revolutionary technique in gene profiling and quantification. It offers a comprehensive view of the transcriptome, making it a more expansive technique in comparison with micro-array. Genes that discriminate malignancy and normal can be deduced using quantitative gene expression. However, this data is a high-dimensional dense matrix; each sample has a dimension of more than 20,000 genes. Dealing with this data poses challenges. This paper proposes RBNRO-DE (Relief Binary NRO based on Differential Evolution) for handling the gene selection strategy on (rnaseqv2 illuminahiseq rnaseqv2 un edu Level 3 RSEM genes normalized) with more than 20,000 genes to pick the best informative genes and assess them through 22 cancer datasets. The k-nearest Neighbor (k-NN) and Support Vector Machine (SVM) are applied to assess the quality of the selected genes. Binary versions of the most common meta-heuristic algorithms have been compared with the proposed RBNRO-DE algorithm. In most of the 22 cancer datasets, the RBNRO-DE algorithm based on k-NN and SVM classifiers achieved optimal convergence and classification accuracy up to 100% integrated with a feature reduction size down to 98%, which is very evident when compared to its counterparts, according to Wilcoxon’s rank-sum test (5% significance level)

    Credit card fraud detection using the brown bear optimization algorithm

    No full text
    Fraud detection in banking systems is crucial for financial stability, customer protection, reputation management, and regulatory compliance. Machine Learning (ML) is vital in improving data analysis, real-time fraud detection, and developing fraud techniques by learning from data and adjusting detection strategies accordingly. Feature Selection (FS) is essential for enhancing fraud detection through ML to achieve optimal model accuracy. This is because it helps to eliminate the negative impact of redundant and irrelevant attributes. To enhance the accuracy of the given dataset, the researchers utilized multiple methods to determine the most fitting features. However, it is important to note that when implementing these methods on datasets with larger feature sizes, they may encounter issues with local optimality. Despite this, the researchers continue to work on improving the effectiveness of these methods. This study presents an effective methodology based on the Brown-Bear Optimization (BBO) algorithm to enhance the capacity to accurately identify financial CCF transactions by recognizing pertinent features. BBO has balanced capabilities to reduce dimensionality while enhancing classification accuracy. It is improved by adjusting the positions randomly to enhance exploration and exploitation capabilities, and then it is cloned into a binary variant named Binary BBOA (BBBOA). The Support Vector Machine (SVM), k-nearest Neighbor (k-NN), and Xgb-tree are the ML classifiers used with the suggested methodology. On the Australian credit dataset, the proposed methodology is compared with the basic BBOA and ten current optimizers, such as Binary African Vultures Optimization (BAVO), Binary Salp Swarm Algorithm (BSSA), Binary Atom Search Optimization (BASO), Binary Henry Gas Solubility Optimization (BHGSO), Binary Harris Hawks Optimization (BHHO), Binary Bat Algorithm (BBA), Binary Particle Swarm Optimization (BPSO), Binary Grasshopper Optimization Algorithm (BGOA), and Binary Sailfish Optimizer (BSFO). Regarding Wilcoxon’s rank-sum test (α=0.05), the superiority and effective consequence of the presented methodology are clear on the utilized dataset and got an accuracy of classification up to 91% in the utilized dataset combined with an attribute reduction length down to 67%. The proposed methodology is further validated using 10 benchmark datasets and outperformed its competitors in most utilized datasets regarding different performance measures. In the end, the proposed methodology is further validated using ten benchmark datasets from the UCI repository. It outperformed its competitors in most of the utilized datasets regarding different performance measures

    Use of cerebrospinal fluid flow rates measured by phase-contrast MR to differentiate normal pressure hydrocephalus from involutional brain changes

    No full text
    Aim: The aim of our study was to assess the value of cerebrospinal fluid flow rates measured by phase-contrast MR in cases of normal pressure hydrocephalus (NPH) and to differentiate it from brain atrophy. Material and methods: A total of 26 participants were enrolled into this study, consisting of 15 patients considered to have NPH, 6 patients with atrophic dilatation of the ventricular system not proportional with cerebral sulci, and 5 control cases. All cases were studied using 1.5 T MRI scanner between January 2012 and June 2014. Results: In NPH patients with high stroke volume, we reported marked elevation of the systolic peak and mean velocity as well as stroke volume in comparison with healthy volunteers, indicating a hyperdynamic CSF circulation. On the other hand we studied six patients with involutional brain changes who were found to have non-statically significant lower systolic peak velocity, systolic mean velocity and stroke volume values in comparison with healthy volunteers indicating a hypodynamic CSF circulation and a diagnosis of atrophy. Conclusion: The mean CSF flow rate may be useful in the diagnosis and differential diagnosis, and the prediction of the potential benefits of surgical intervention for patients considered to have NPH
    corecore