75 research outputs found

    Redox phospholipidomics of enzymatically generated oxygenated phospholipids as specific signals of programmed cell death

    Get PDF
    High fidelity and effective adaptive changes of the cell and tissue metabolism to changing environments require strict coordination of numerous biological processes. Multicellular organisms developed sophisticated signaling systems of monitoring and responding to these different contexts. Among these systems, oxygenated lipids play a significant role realized via a variety of re-programming mechanisms. Some of them are enacted as a part of pro-survival pathways that eliminate harmful or unnecessary molecules or organelles by a variety of degradation/hydrolytic reactions or specialized autophageal processes. When these “partial” intracellular measures are insufficient, the programs of cells death are triggered with the aim to remove irreparably damaged members of the multicellular community. These regulated cell death mechanisms are believed to heavily rely on signaling by a highly diversified group of molecules, oxygenated phospholipids (PLox). Out of thousands of detectable individual PLox species, redox phospholipidomics deciphered several specific molecules that seem to be diagnostic of specialized death programs. Oxygenated cardiolipins (CLs) and phosphatidylethanolamines (PEs) have been identified as predictive biomarkers of apoptosis and ferroptosis, respectively. This has led to decoding of the enzymatic mechanisms of their formation involving mitochondrial oxidation of CLs by cytochrome c and endoplasmic reticulum-associated oxidation of PE by lipoxygenases. Understanding of the specific biochemical radical-mediated mechanisms of these oxidative reactions opens new avenues for the design and search of highly specific regulators of cell death programs. This review emphasizes the usefulness of such selective lipid peroxidation mechanisms in contrast to the concept of random poorly controlled free radical reactions as instruments of non-specific damage of cells and their membranes. Detailed analysis of two specific examples of phospholipid oxidative signaling in apoptosis and ferroptosis along with their molecular mechanisms and roles in reprogramming has been presented

    RAGE (Receptor for Advanced Glycation Endproducts), RAGE Ligands, and their role in Cancer and Inflammation

    Get PDF
    The Receptor for Advanced Glycation Endproducts [RAGE] is an evolutionarily recent member of the immunoglobulin super-family, encoded in the Class III region of the major histocompatability complex. RAGE is highly expressed only in the lung at readily measurable levels but increases quickly at sites of inflammation, largely on inflammatory and epithelial cells. It is found either as a membrane-bound or soluble protein that is markedly upregulated by stress in epithelial cells, thereby regulating their metabolism and enhancing their central barrier functionality. Activation and upregulation of RAGE by its ligands leads to enhanced survival. Perpetual signaling through RAGE-induced survival pathways in the setting of limited nutrients or oxygenation results in enhanced autophagy, diminished apoptosis, and (with ATP depletion) necrosis. This results in chronic inflammation and in many instances is the setting in which epithelial malignancies arise. RAGE and its isoforms sit in a pivotal role, regulating metabolism, inflammation, and epithelial survival in the setting of stress. Understanding the molecular structure and function of it and its ligands in the setting of inflammation is critically important in understanding the role of this receptor in tumor biology

    Coupled proteolytic and mass spectrometry studies indicate a novel topology for the glycine receptor

    No full text
    Members of the heteropentameric ligand-gated ion channel superfamily rapidly mediate signaling across the synaptic cleft. Sequence analysis and limited experimental studies have yielded a topological model containing four transmembrane α-helices, labeled M1 to M4, and a large soluble, extracellular N-terminal domain. This model persists to date despite some recent structural studies that suggest it may be inappropriate. In this study, the topology of the glycine receptor was probed by limited proteolysis coupled to mass spectrometry. Of particular note, accessible cleavage sites within the putative M1 and M3 transmembrane helices were identified. Membrane-associated fragments within the postulated globular extracellular N- terminal domain were also observed. This report presents several key details incorporated in a new topological model and is the first direct experimental evidence that a subset of the transmembrane regions are too short to be membrane-spanning α-helices; rather, these regions are proposed to be a mix of α-helices and β-sheets. This report is also the first to exploit the capability of mass spectrometry to probe critically the topology of a class of membrane proteins of unknown structure

    Ceramide Mediates Tumor-Induced Dendritic Cell Apoptosis

    No full text
    • …
    corecore