39 research outputs found

    LICIACube on DART Mission: An Asteroid Impact Captured by Italian Small Satellite Technology

    Get PDF
    In the frame of the Planetary Defense program, NASA developed the Double Asteroid Redirection Test (DART) mission and the Italian Space Agency joined the effort. DART’s spacecraft will act as a kinetic impactor by deliberately crashing into the moonlet of Didymos binary system (i.e. Didymos-B) while the effects of the impact will be observed by a small satellite, the Light Italian CubeSat for Imaging of Asteroid (LICIACube) and ground-based telescopes. LICIACube, an Italian Space Agency (ASI) mission, will fly with a relative velocity of approximately 6.5 km/s and it will document the effects of the impact, the crater and the evolution of the plume generated by the collision. LICIACube will have to maintain the asteroid\u27s pointing at an angular speed of approximately 10 deg/s to fly-by the asteroid close to the Didymos-B surface. The images acquired by LICIACube will be processed onboard through the autonomous navigation algorithm to identify the asteroid system and control the satellite attitude. They will also help the scientific community and provide feedback to the Planetary Defense program, pioneered by the Space Agencies. This deep-space mission is based on a small scale but highly technological platform, whose development is involving both the Italian technical and scientific community

    LICIACube Mission: The Fastest Fly-By Ever Done by a CubeSat

    Get PDF
    As SmallSats are gathering an ever-increasing importance for all types of space missions, they are asked more often to operate in harshest environments and to complete the most complex tasks. One of these demanding technical challenges arises in the frame of the planetary defense. Space missions towards asteroids have garnered the due attention in recent years and, in this regard, NASA has developed the Double Asteroid Redirection Test (DART) mission, in which the Italy will lend its contribution. While DART acts as a kinetic impactor deflecting the orbit of the asteroid Dimorphos, the moon of the targeted binary system Didymos, the Light Italian CubeSat for Imaging of Asteroid (LICIACube) collects and gathers valuable images of the effect of the DART impact on the rocky body. LICIACube will allow to study the structure and evolution of the ejecta plume resulting from the impact, and to model both impacted and non-impacted sides of Dimorphos. LICIACube is an Italian Space Agency (ASI) project, whose design, integration and testing have been assigned to the aerospace company Argotec. The scientific team is enriched by University of Bologna team, supporting the orbit determination and the satellite navigation, Polytechnic of Milan, for mission analysis support and optimization and INAF (National Institute of Astrophysics), which provides support in the scientific operations of the satellite, instrument calibrations and data exploitation. This work focuses on the fly-by of LICIACube which will be accomplished using the imaging capabilities provided by theArgotecHAWK-6 platform and by the autonomous navigation system. In order to acquire high-resolution images, LICIACube approaches Dimorphos at a relative distance of 55km. The very close fly-by, the high relative velocity of ∼7 km/s with respect to the asteroid and the need to keep LICIACube camera pointed at Dimorphos make the mission very challenging. In addition, since the binary asteroid system is ∼10 million kilometers away from Earth, the fly-by has to be performed with no real time commanding. As a result, LICIACube shall be able to autonomously analyze all information from its sensors to track the asteroid. The evaluation and subsequent solutions to this problem are presented in this paper, as well as a unit-level description of the parts included in the autonomous navigation system. Finally, an overview of the verification of both unit-level and system-level strategies is outlined

    SIMBIO-Sim: a performance simulator for the SIMBIO-SYS suite on board the BepiColombo mission

    Get PDF
    The SIMBIO-SYS simulator is a useful tool to test the instrument performance and to predict the instrument behaviour during the whole scientific mission. It has been developed with Interactive Data Language (IDL), and it give three groups of output data: i) the geometrical quantities related to the spacecraft and the channels, which include both the general information about the spacecraft and the information for each filter; ii) the radiometric outputs, which include the planet reflectance, the radiance and the expected signal measured by the detector; iii) the quantities related to the channel performance, which are for example the integration time (IT), which has to be defined to avoid the detector saturation, the expected dark current of the detector

    Development of a simulator of the SIMBIOSYS suite onboard the BepiColombo mission

    Get PDF
    BepiColombo is the fifth cornerstone mission of the European Space Agency (ESA) dedicated to study the Mercury planet. The BepiColombo spacecraft comprises two science modules: the Mercury Planetary Orbiter (MPO) realized by ESA and the Mercury Magnetospheric Orbiter provided by the Japan Aerospace Exploration Agency. The MPO is composed by 11 instruments, including the 'Spectrometer and Imagers for MPO BepiColombo Integrated Observatory System' (SIMBIOSYS). The SIMBIOSYS suite includes three optical channels: a Stereoscopic Imaging Channel, a High Resolution Imaging Channel, and a Visible and near Infrared Hyperspectral Imager. SIMBIOSYS will characterize the hermean surface in terms of surface morphology, volcanism, global tectonics, and chemical composition. The aim of this work is to describe a tool for the radiometric response prediction of the three SIMBIOSYS channels. Given the spectral properties of the surface, the instrument characteristics, and the geometrical conditions of the observation, the realized SIMBIOSYS simulator is capable of estimating the expected signal and integration times for the entire mission lifetime. In the simulator the spectral radiance entering the instrument optical apertures has been modelled using a Hapke reflectance model implementing the parameters expected for the hermean surface. The instrument performances are simulated by means of calibrated optical and detectors responses. The simulator employs the SPICE (Spacecraft, Planet, Instrument, C-matrix, Environment) toolkit software, which allows us to know for each epoch the exact position of the MPO with respect to the planet surface and the Sun

    Independent confirmation of a methane spike on Mars and a source region east of Gale Crater

    Get PDF
    Reports of methane detection in the Martian atmosphere have been intensely debated. The presence of methane could enhance habitability and may even be a signature of life. However, no detection has been confirmed with independent measurements. Here, we report a firm detection of 15.5 ± 2.5 ppb by volume of methane in the Martian atmosphere above Gale Crater on 16 June 2013, by the Planetary Fourier Spectrometer onboard Mars Express, one day after the in situ observation of a methane spike by the Curiosity rover. Methane was not detected in other orbital passages. The detection uses improved observational geometry, as well as more sophisticated data treatment and analysis, and constitutes a contemporaneous, independent detection of methane. We perform ensemble simulations of the Martian atmosphere, using stochastic gas release scenarios to identify a potential source region east of Gale Crater. Our independent geological analysis also points to a source in this region, where faults of Aeolis Mensae may extend into proposed shallow ice of the Medusae Fossae Formation and episodically release gas trapped below or within the ice. Our identification of a probable release location will provide focus for future investigations into the origin of methane on Mars

    The SSDC Role in the LICIACube Mission: Data Management and the MATISSE Tool

    Get PDF
    Light Italian Cubesat for Imaging of Asteroids (LICIACube) is an Italian mission managed by the Italian Space Agency (ASI) and part of the NASA Double Asteroid Redirection Test (DART) planetary defense mission. Its main goals are to document the effects of the DART impact on Dimorphos, the secondary member of the (65803) Didymos binary asteroid system, characterizing the shape of the target body and performing dedicated scientific investigations on it. Within this framework, the mission Science Operations Center will be managed by the Space Science Data Center (ASI-SSDC), which will have the responsibility of processing, archiving, and disseminating the data acquired by the two LICIACube onboard cameras. In order to better accomplish this task, SSDC also plans to use and modify its scientific webtool Multi-purpose Advanced Tool for Instruments for the solar system Exploration (MATISSE), making it the primary tool for the LICIACube data analysis, thanks to its advanced capabilities for searching and visualizing data, particularly useful for the irregular shapes common to several small bodies

    SIMBIO-SYS Near Earth Commissioning Phase: a step forward toward Mercury

    Get PDF
    On December 2018, the Near Earth Commissioning Phase (NECP) has been place forSIMBIO-SYS (Spectrometers and Imagers for MPO BepiColombo Integrated Observatory - SYStem), the suite part of the scientific payload of the BepiColombo ESA-JAXA mission. SIMBIO-SYS is composed of three channels: the high resolution camera (HRIC), the stereo camera (STC) and the Vis/NIR spectrometer (VIHI) . During the NECP the three channels have been operated properly. For the three channels were checked the operativity and the performance. The commanded operations allowed to verify all the instrument functionalities demonstrating that all SIMBIO-SYS channels and subsystems work nominally. During this phase we also validated the Ground Segment Equipment (GSE) and the data analysis tools developed by the team

    Synthetic Images and Colours of the Dimorphos Asteroid Ejecta Plume as seen from the LICIACube spacecraft

    No full text
    IntroductionThe NASA Double Asteroid Redirection Test (DART) mission will be the first test to check an asteroid deflection by a kinetic impactor. The target of DART mission is Dimorphos the secondary element of the (65803) Didymos binary asteroid system, and the impact is expected in late September - early October, 2022 [1] The DART S/C will carry a 6U cubesat called LICIACube (Light Italian Cubesat for Imaging of Asteroid) [2], provided by the Italian Space Agency, with the aim to collect pictures of the impact"s effects. On board LICIAcube will be hosted 2 camera payloads: LEIA a panchromatic (400-900nm Filter, 2.9x2.9° FOV) Narrow Angle Camera and LUKE a RGB (Bayer color filter, 4.8 x 9.15° FOV). LICIACube will be able to acquire the structure and evolution of the DART impact ejecta plume and will obtain high-resolution images and 2 colours data (B-G, G-R) of the surfaces of both bodies and the plume.In order to check the imaging capability and to optimize the fast scientific phase of LICIACube, the LICIACube team performed simulations of pictures" acquisition. In these simulations, considering the specifications of the 2 optical payloads and the foreseen mission design, we reconstructed synthetic images mainly of the plume. Since the study of the plume and its evolution is one of the main scientific goal of the mission we performed a scattering modelling of the ejecta in order to invert the future photometric data deriving hints on the intimate nature of the dust particles released by the impact.Plume simulated Images and column densityWith the two-fold aim of set the operative parameters for the Payloads and to understand the information retrievable by the images of the evolving plume we started an imaging simulation activities taking into account:LICIAcube mission design [3] (Trajectory, Speed, illumination conditions) Payloads optical characteristics The plume evolution was simplified assuming:Non colliding particles during the plume evolution; A speed distribution in the plume given by eq: Where x is the distance on Dimorphos surface from the DART impact point and the other parameters used, considering as main material of asteroid system the cemented basalt, are reported in table:We considered the most representative 3 size bins for what concerns the ejected mass, the expected total number of particles are reported in table:In Figure 1 is reported the simulated image obtained considering the LICIACube trajectory 50s before the close approach (about 110 s after the DART impact).Figure 1 Plume simulated image relative values for irradianceOnce the simulated column density image was obtained, we added a scattering simulation considering spherical dust particles and using a Mie code well suited for large particles approaching the geometric optics regime [4]. In this way we were able to translate column densities in luminous fluxes measured by the instrument using a methodology described in the next section.Plume colours scattering modellingRGB data of the ejecta plume can be used to derive hints on the physical properties of the ejected particles through scattering modelling of the measured two colours (B-G, G-R) and the phase function versus the phase angle of observation α.Given the intensity of solar light incident on the plume"s single particle Iinc,, considering the incident solar light as unpolarized, the intensity of light scattered by the particle at α, Isca is given by [5]:where S11(α) is the first element of the 4X4 scattering Müller matrix, k=2π/λ is the wave number, and r is the distance between the particle and the observer. In this case: being FSun the solar flux at 1 AU, rh the heliocentric distance of the dust particle, and a its radius.The Mie code provides the complete scattering matrix once the dimension of the particle and its composition in terms of the complex refractive index of the material at the considered wavelength are given as input. We used largely referenced laboratory data on basaltic materials to obtain the optical properties of the dust particles [6]. This composition is used to model the dust particles residing on the asteroid surface [1], [2].Then, in order to find the intensity due to the scattering of a single particle measured by the instrument at phase angle α, we convolved Isca with the photometric response of the instrument. For a generic filter, such measured intensity is where Resp is the photometric response of the instrument extended throughout the bandpass of the filter. This response is a known product of several factors as the entrance pupil of the system, the reflectivity of the optics, the transmission curve of the filter, the quantum efficiency of the detector, and the exposure time.Synthetic colours of the dust particles can therefore being computed being the generic color A-B = -2.5log(IA/IB). We performed sample scattering colour calculations varying the particle size from 0.1 micron to 1 cm.Small particles provide extremely variable colours due to the strong influence of scattering resonances being the incident wavelength comparable with the size of the particles themselves. Colours get stable for a larger interval of phase angle proportionally to the increase of the size. Observations of stable colours in the plume during LICIACube flyby will be indicative of particles larger than 100 micron. At the same time, large basalt particles provide a flatter phase function at intermediate and small phase angles than smaller particles.Combined observations of the plume phase function and colour will therefore effectively constrain the size of the ejected particles providing theoretical inputs to the dynamical models
    corecore