4 research outputs found

    Effect of intermittent preventive treatment for malaria with dihydroartemisinin-piperaquine on immune responses to vaccines among rural Ugandan adolescents: randomised controlled trial protocol B for the 'POPulation differences in VACcine responses' (POPVAC) programme.

    Get PDF
    INTRODUCTION: Drivers of lower vaccine efficacy and impaired vaccine-specific immune responses in low-income versus high-income countries, and in rural compared with urban settings, are not fully elucidated. Repeated exposure to and immunomodulation by parasite infections may be important. We focus on Plasmodium falciparum malaria, aiming to determine whether there are reversible effects of malaria infection on vaccine responses. METHODS AND ANALYSIS: We have designed a randomised, double-blind, placebo-controlled, parallel group trial of intermittent preventive malaria treatment versus placebo, to determine effects on vaccine response outcomes among school-going adolescents (9 to 17 years) from malaria-endemic rural areas of Jinja district (Uganda). Vaccines to be studied comprise BCG vaccine on day 'zero'; yellow fever, oral typhoid and human papilloma virus vaccines at week 4; and tetanus/diphtheria booster vaccine at week 28. Participants in the intermittent preventive malaria treatment arm will receive dihydroartemisinin/piperaquine (DP) dosed by weight, 1 month apart, prior to the first immunisation, followed by monthly treatment thereafter. We expect to enrol 640 adolescents. Primary outcomes are BCG-specific interferon-γ ELISpot responses 8 weeks after BCG immunisation and for other vaccines, antibody responses to key vaccine antigens at 4 weeks after immunisation. In secondary analyses, we will determine effects of monthly DP treatment (versus placebo) on correlates of protective immunity, on vaccine response waning, on whether there are differential effects on priming versus boosting immunisations, and on malaria infection prevalence. We will also conduct exploratory immunology assays among subsets of participants to further characterise effects of the intervention on vaccine responses. ETHICS AND DISSEMINATION: Ethics approval has been obtained from relevant Ugandan and UK ethics committees. Results will be shared with Uganda Ministry of Health, relevant district councils, community leaders and study participants. Further dissemination will be done through conference proceedings and publications. TRIAL REGISTRATION NUMBER: Current Controlled Trials identifier: ISRCTN62041885

    Effect of intensive treatment for schistosomiasis on immune responses to vaccines among rural Ugandan island adolescents: randomised controlled trial protocol A for the 'POPulation differences in VACcine responses' (POPVAC) programme.

    Get PDF
    INTRODUCTION: Several licensed and investigational vaccines have lower efficacy, and induce impaired immune responses, in low-income versus high-income countries and in rural, versus urban, settings. Understanding these population differences is essential to optimising vaccine effectiveness in the tropics. We suggest that repeated exposure to and immunomodulation by chronic helminth infections partly explains population differences in vaccine response. METHODS AND ANALYSIS: We have designed an individually randomised, parallel group trial of intensive versus standard praziquantel (PZQ) intervention against schistosomiasis, to determine effects on vaccine response outcomes among school-going adolescents (9-17 years) from rural Schistosoma mansoni-endemic Ugandan islands. Vaccines to be studied comprise BCG on day 'zero'; yellow fever, oral typhoid and human papilloma virus (HPV) vaccines at week 4; and HPV and tetanus/diphtheria booster vaccine at week 28. The intensive arm will receive PZQ doses three times, each 2 weeks apart, before BCG immunisation, followed by a dose at week 8 and quarterly thereafter. The standard arm will receive PZQ at week 8 and 52. We expect to enrol 480 participants, with 80% infected with S. mansoni at the outset.Primary outcomes are BCG-specific interferon-γ ELISpot responses 8 weeks after BCG immunisation and for other vaccines, antibody responses to key vaccine antigens at 4 weeks after immunisation. Secondary analyses will determine the effects of intensive anthelminthic treatment on correlates of protective immunity, on waning of vaccine response, on priming versus boosting immunisations and on S. mansoni infection status and intensity. Exploratory immunology assays using archived samples will enable assessment of mechanistic links between helminths and vaccine responses. ETHICS AND DISSEMINATION: Ethics approval has been obtained from relevant ethics committes of Uganda and UK. Results will be shared with Uganda Ministry of Health, relevant district councils, community leaders and study participants. Further dissemination will be done through conference proceedings and publications. TRIAL REGISTRATION NUMBER: ISRCTN60517191

    Population differences in vaccine responses (POPVAC): scientific rationale and cross-cutting analyses for three linked, randomised controlled trials assessing the role, reversibility and mediators of immunomodulation by chronic infections in the tropics

    No full text
    Introduction Vaccine-specific immune responses vary between populations and are often impaired in low income, rural settings. Drivers of these differences are not fully elucidated, hampering identification of strategies for optimising vaccine effectiveness. We hypothesise that urban–rural (and regional and international) differences in vaccine responses are mediated to an important extent by differential exposure to chronic infections, particularly parasitic infections.Methods and analysis Three related trials sharing core elements of study design and procedures (allowing comparison of outcomes across the trials) will test the effects of (1) individually randomised intervention against schistosomiasis (trial A) and malaria (trial B), and (2) Bacillus Calmette-Guérin (BCG) revaccination (trial C), on a common set of vaccine responses. We will enrol adolescents from Ugandan schools in rural high-schistosomiasis (trial A) and rural high-malaria (trial B) settings and from an established urban birth cohort (trial C). All participants will receive BCG on day ‘0’; yellow fever, oral typhoid and human papilloma virus (HPV) vaccines at week 4; and HPV and tetanus/diphtheria booster vaccine at week 28. Primary outcomes are BCG-specific IFN-γ responses (8 weeks after BCG) and for other vaccines, antibody responses to key vaccine antigens at 4 weeks after immunisation. Secondary analyses will determine effects of interventions on correlates of protective immunity, vaccine response waning, priming versus boosting immunisations, and parasite infection status and intensity. Overarching analyses will compare outcomes between the three trial settings. Sample archives will offer opportunities for exploratory evaluation of the role of immunological and ‘trans-kingdom’ mediators in parasite modulation of vaccine-specific responses.Ethics and dissemination Ethics approval has been obtained from relevant Ugandan and UK ethics committees. Results will be shared with Uganda Ministry of Health, relevant district councils, community leaders and study participants. Further dissemination will be done through conference proceedings and publications.Trial registration numbers ISRCTN60517191, ISRCTN62041885, ISRCTN10482904

    Impact of BCG revaccination on the response to unrelated vaccines in a Ugandan adolescent birth cohort: randomised controlled trial protocol C for the ‘POPulation differences in VACcine responses’ (POPVAC) programme

    No full text
    Introduction There is evidence that BCG immunisation may protect against unrelated infectious illnesses. This has led to the postulation that administering BCG before unrelated vaccines may enhance responses to these vaccines. This might also model effects of BCG on unrelated infections.Methods and analysis To test this hypothesis, we have designed a randomised controlled trial of BCG versus no BCG immunisation to determine the effect of BCG on subsequent unrelated vaccines, among 300 adolescents (aged 13–17 years) from a Ugandan birth cohort. Our schedule will comprise three main immunisation days (week 0, week 4 and week 28): BCG (or no BCG) revaccination at week 0; yellow fever (YF-17D), oral typhoid (Ty21a) and human papillomavirus (HPV) prime at week 4; and HPV boost and tetanus/diphtheria (Td) boost at week 28. Primary outcomes are anti-YF-17D neutralising antibody titres, Salmonella typhi lipopolysaccharide-specific IgG concentration, IgG specific for L1-proteins of HPV-16/HPV-18 and tetanus and diphtheria toxoid-specific IgG concentration, all assessed at 4 weeks after immunisation with YF, Ty21a, HPV and Td, respectively. Secondary analyses will determine effects on correlates of protective immunity (where recognised correlates exist), on vaccine response waning and on whether there are differential effects on priming versus boosting immunisations. We will also conduct exploratory immunology assays among subsets of participants to further characterise effects of BCG revaccination on vaccine responses. Further analyses will assess which life course exposures influence vaccine responses in adolescence.Ethics and dissemination Ethics approval has been obtained from relevant Ugandan and UK ethics committees. Results will be shared with Uganda Ministry of Health, relevant district councils, community leaders and study participants. Further dissemination will be done through conference proceedings and publications.Trial registration number ISRCTN10482904
    corecore