40 research outputs found
Parallel use of shake flask and microtiter plate online measuring devices (RAMOS and BioLector) reduces the number of experiments in laboratory-scale stirred tank bioreactors
Background
Conventional experiments in small scale are often performed in a Black Box fashion, analyzing only the product concentration in the final sample. Online monitoring of relevant process characteristics and parameters such as substrate limitation, product inhibition and oxygen supply is lacking. Therefore, fully equipped laboratory-scale stirred tank bioreactors are hitherto required for detailed studies of new microbial systems. However, they are too spacious, laborious and expensive to be operated in larger number in parallel. Thus, the aim of this study is to present a new experimental approach to obtain dense quantitative process information by parallel use of two small-scale culture systems with online monitoring capabilities: Respiration Activity MOnitoring System (RAMOS) and the BioLector device.
Results
The same mastermix (medium plus microorganisms) was distributed to the different small-scale culture systems: 1) RAMOS device; 2) 48-well microtiter plate for BioLector device; and 3) separate shake flasks or microtiter plates for offline sampling. By adjusting the same maximum oxygen transfer capacity (OTRmax), the results from the RAMOS and BioLector online monitoring systems supplemented each other very well for all studied microbial systems (E. coli, G. oxydans, K. lactis) and culture conditions (oxygen limitation, diauxic growth, auto-induction, buffer effects).
Conclusions
The parallel use of RAMOS and BioLector devices is a suitable and fast approach to gain comprehensive quantitative data about growth and production behavior of the evaluated microorganisms. These acquired data largely reduce the necessary number of experiments in laboratory-scale stirred tank bioreactors for basic process development. Thus, much more quantitative information is obtained in parallel in shorter time.Cluster of Excellence “Tailor-Made Fuels from Biomass”, which is funded by the Excellence Initiative by the German federal and state governments to promote science and research at German universities
Purification of rhamnolipid using colloidal magnetic nanoparticles
Phospholipid-coated colloidal magnetic nanoparticles with mean magnetite core size of 9 nm are shown to be effective ion exchange media for the recovery and purification of Rhaminolipid from culture mixtures. These particles have high adsorption capacity for purification (an order of magnitude larger than the best commercially available adsorbents) and exhibit none of the diffusion resistances offered by conventional porous ion exchange media. Furthermore, purification in biological processes using colloidal magnetic nanoparticles results in saving the cost and time. In this study, production of the Rhaminolipid by Pseudomonas aeruginosa in culture media (MSM) with two types of carbon sources was carried out. Then, purification analysis was done to two types of solutions: 1. culture media without the strain 2-culture media with the strain at the different conditions of pH and ionic strength. The results of this purification method were compared to the results obtained of TLC purification method. Finally, purification of the Rhaminolipid was determined over 90% by this method
An investigation on the chemical stability and a novel strategy for long-term stabilization of diphenylalanine nanostructures in aqueous solution
The stability of diphenylalanine (FF) microwires and microtubes in phosphate buffer solution was investigated and a novel strategy was developed for their chemical stabilization. This stability investigation was carried out by optical microscopy and by high performance liquid chromatography (HPLC). These microstructures dissolve in the solution depending upon their degree of FF saturation. The dissolution mechanisms of the structures in kinetically limited processes were found by accurately fitting the experimental dissolution data to a theoretical kinetic equation. The dissolution data were well fitted to the particular Avrami-Erofe’ev kinetic expression (R2 > 0.98). These findings suggest that the structures can be stabilized by a decrease in the hydration of the constituent molecules thorough a chemical conformational induced transition upon heat treatment. The stable microtubes were fabricated in a novel three step procedure consisting of the reduction of silver ions in unstable FF microtubes by a citrate reductant, the stabilization by chemical conformational induced transition upon heat treatment, and the consequent oxidation of the reduced silver by a persulfate oxidant. These materials were characterized by electron microscopy and powder X-ray diffraction techniques. The long-term stability of both structures was also confirmed by optical microscopy and HPLC