3 research outputs found

    The Role of Geographic Information System in Environmental Planning and Management in Oman

    No full text
    The use of Geographic Information Systems (GIS) has grown to cover various disciplines. The ability to use big data and geoprocessing tools allowed many sectors to use spatial data analysis and modeling for more effective decision-making and increased productivity. The use of GIS has become even more vital in the field of environmental planning and management, where incorporating environmental information contributes significantly to sustainable development. In addition, the ability to use spatial modeling at small-scale local or large-scale regional levels will broaden the knowledge of the direct and indirect impacts of development projects on the environment. This paper assesses the role played by GIS in Oman for generating information to gain insight into the many environmental challenges faced by the country toward more sustainable development. It provides an overview of what has been achieved, the approaches taken, and the way forward

    Assessing the Impact of Climate Change on the Distribution of Lime (16srii-B) and Alfalfa (16srii-D) Phytoplasma Disease Using MaxEnt

    No full text
    Witches’ broom disease has led to major losses in lime and alfalfa production in Oman. This paper identifies bioclimatic variables that contribute to the prediction of distribution of witches’ broom disease in current and future climatic scenarios. It also explores the expansion, reduction, or shift in the climatic niche of the distribution of the disease across the different geographical areas of the entire country (309,501 km²). The maximum entropy model (MaxEnt) and geographical information system were used to investigate the potential suitability of habitats for the phytoplasma disease. This study used current (1970–2000) and future projected climatic scenarios (2021–2040, 2041–2060, 2061–2080, and 2081–2100) to model the distribution of phytoplasma for lime trees and alfalfa in Oman. Bioclimatic variables were downloaded from WorldClim with ± 60 occurrence points for lime trees and alfalfa. The area under the curve (AUC) was used to evaluate the model’s performance. Quantitatively, the results showed that the mean of the AUC values for lime (16SrII-B) and alfalfa (16SrII-D) future distribution for the periods of 2021–2040, 2041–2060, 2061–2080, and 2081–2100 were rated as “excellent”, with the values for the specified time periods being 0.859, 0.900, 0.931, and 0.913 for 16SrII-B; and 0.826, 0.837, 08.58, and 0.894 for 16SrII-D respectively. In addition, this study identified the hotspots and proportions of the areas that are vulnerable under the projected climate-change scenarios. The area of current (2021–2040) highly suitable distribution within the entire country for 16SrII-D was 19474.2 km2 (7.1%), while for 16SrII-B, an area of 8835 km2 (3.2%) was also highly suitable for the disease distribution. The proportions of these suitable areas are very significant from the available arable land standpoint. Therefore, the results from this study will be of immense benefit and will also bring significant contributions in mapping the areas of witches’ broom diseases in Oman. The results will equally aid the development of new strategies and the formulation of agricultural policies and practices in controlling the spread of the disease across Oman

    Assessing the Impact of Climate Change on the Distribution of Lime (16srii-B) and Alfalfa (16srii-D) Phytoplasma Disease Using MaxEnt

    No full text
    Witches’ broom disease has led to major losses in lime and alfalfa production in Oman. This paper identifies bioclimatic variables that contribute to the prediction of distribution of witches’ broom disease in current and future climatic scenarios. It also explores the expansion, reduction, or shift in the climatic niche of the distribution of the disease across the different geographical areas of the entire country (309,501 km²). The maximum entropy model (MaxEnt) and geographical information system were used to investigate the potential suitability of habitats for the phytoplasma disease. This study used current (1970–2000) and future projected climatic scenarios (2021–2040, 2041–2060, 2061–2080, and 2081–2100) to model the distribution of phytoplasma for lime trees and alfalfa in Oman. Bioclimatic variables were downloaded from WorldClim with ± 60 occurrence points for lime trees and alfalfa. The area under the curve (AUC) was used to evaluate the model’s performance. Quantitatively, the results showed that the mean of the AUC values for lime (16SrII-B) and alfalfa (16SrII-D) future distribution for the periods of 2021–2040, 2041–2060, 2061–2080, and 2081–2100 were rated as “excellent”, with the values for the specified time periods being 0.859, 0.900, 0.931, and 0.913 for 16SrII-B; and 0.826, 0.837, 08.58, and 0.894 for 16SrII-D respectively. In addition, this study identified the hotspots and proportions of the areas that are vulnerable under the projected climate-change scenarios. The area of current (2021–2040) highly suitable distribution within the entire country for 16SrII-D was 19474.2 km2 (7.1%), while for 16SrII-B, an area of 8835 km2 (3.2%) was also highly suitable for the disease distribution. The proportions of these suitable areas are very significant from the available arable land standpoint. Therefore, the results from this study will be of immense benefit and will also bring significant contributions in mapping the areas of witches’ broom diseases in Oman. The results will equally aid the development of new strategies and the formulation of agricultural policies and practices in controlling the spread of the disease across Oman
    corecore