6 research outputs found

    Get screened: a pragmatic randomized controlled trial to increase mammography and colorectal cancer screening in a large, safety net practice

    Get PDF
    Abstract Background Most randomized controlled trials of interventions designed to promote cancer screening, particularly those targeting poor and minority patients, enroll selected patients. Relatively little is known about the benefits of these interventions among unselected patients. Methods/Design "Get Screened" is an American Cancer Society-sponsored randomized controlled trial designed to promote mammography and colorectal cancer screening in a primary care practice serving low-income patients. Eligible patients who are past due for mammography or colorectal cancer screening are entered into a tracking registry and randomly assigned to early or delayed intervention. This 6-month intervention is multimodal, involving patient prompts, clinician prompts, and outreach. At the time of the patient visit, eligible patients receive a low-literacy patient education tool. At the same time, clinicians receive a prompt to remind them to order the test and, when appropriate, a tool designed to simplify colorectal cancer screening decision-making. Patient outreach consists of personalized letters, automated telephone reminders, assistance with scheduling, and linkage of uninsured patients to the local National Breast and Cervical Cancer Early Detection program. Interventions are repeated for patients who fail to respond to early interventions. We will compare rates of screening between randomized groups, as well as planned secondary analyses of minority patients and uninsured patients. Data from the pilot phase show that this multimodal intervention triples rates of cancer screening (adjusted odds ratio 3.63; 95% CI 2.35 - 5.61). Discussion This study protocol is designed to assess a multimodal approach to promotion of breast and colorectal cancer screening among underserved patients. We hypothesize that a multimodal approach will significantly improve cancer screening rates. The trial was registered at Clinical Trials.gov NCT00818857http://deepblue.lib.umich.edu/bitstream/2027.42/78264/1/1472-6963-10-280.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78264/2/1472-6963-10-280.pdfPeer Reviewe

    Deep Learning for Depression Detection from Textual Data

    Full text link
    Depression is a prevalent sickness, spreading worldwide with potentially serious implications. Timely recognition of emotional responses plays a pivotal function at present, with the profound expansion of social media and users of the internet. Mental illnesses are highly hazardous, stirring more than three hundred million people. Moreover, that is why research is focused on this subject. With the advancements of machine learning and the availability of sample data relevant to depression, there is the possibility of developing an early depression diagnostic system, which is key to lessening the number of afflicted individuals. This paper proposes a productive model by implementing the Long-Short Term Memory (LSTM) model, consisting of two hidden layers and large bias with Recurrent Neural Network (RNN) with two dense layers, to predict depression from text, which can be beneficial in protecting individuals from mental disorders and suicidal affairs. We train RNN on textual data to identify depression from text, semantics, and written content. The proposed framework achieves 99.0% accuracy, higher than its counterpart, frequency-based deep learning models, whereas the false positive rate is reduced. We also compare the proposed model with other models regarding its mean accuracy. The proposed approach indicates the feasibility of RNN and LSTM by achieving exceptional results for early recognition of depression in the emotions of numerous social media subscribers

    Deep Learning for Depression Detection from Textual Data

    Full text link
    Depression is a prevalent sickness, spreading worldwide with potentially serious implications. Timely recognition of emotional responses plays a pivotal function at present, with the profound expansion of social media and users of the internet. Mental illnesses are highly hazardous, stirring more than three hundred million people. Moreover, that is why research is focused on this subject. With the advancements of machine learning and the availability of sample data relevant to depression, there is the possibility of developing an early depression diagnostic system, which is key to lessening the number of afflicted individuals. This paper proposes a productive model by implementing the Long-Short Term Memory (LSTM) model, consisting of two hidden layers and large bias with Recurrent Neural Network (RNN) with two dense layers, to predict depression from text, which can be beneficial in protecting individuals from mental disorders and suicidal affairs. We train RNN on textual data to identify depression from text, semantics, and written content. The proposed framework achieves 99.0% accuracy, higher than its counterpart, frequency-based deep learning models, whereas the false positive rate is reduced. We also compare the proposed model with other models regarding its mean accuracy. The proposed approach indicates the feasibility of RNN and LSTM by achieving exceptional results for early recognition of depression in the emotions of numerous social media subscribers

    Blockchain and cloud computing-based secure electronic healthcare records storage and sharing

    Get PDF
    Healthcare information is essential for both service providers and patients. Further secure sharing and maintenance of Electronic Healthcare Records (EHR) are imperative. EHR systems in healthcare have traditionally relied on a centralized system (e.g., cloud) to exchange health data across healthcare stakeholders, which may expose private and sensitive patient information. EHR has struggled to meet the demands of several stakeholders and systems in terms of safety, isolation, and other regulatory constraints. Blockchain is a distributed, decentralized ledger technology that can provide secured, validated, and immutable data sharing facilities. Blockchain creates a distributed ledger system using techniques of cryptography (hashes) that are consistent and permit actions to be carried out in a distributed manner without needing a centralized authority. Data exploitation is difficult and evident in a blockchain network due to its immutability. We propose an architecture based on blockchain technology that authenticates the user identity using a Proof of Stake (POS) cryptography consensus mechanism and Secure Hash Algorithm (SHA256) to secure EHR sharing among different electronic healthcare systems. An Elliptic Curve Digital Signature Algorithm (ECDSA) is used to verify EHR sensors to assemble and transmit data to cloud infrastructure. Results indicate that the proposed solution performs exceptionally well when compared with existing solutions, which include Proof-Of-Work (POW), Secure Hash Algorithm (SHA-1), and Message Digest (MD5) in terms of power consumption, authenticity, and security of healthcare records
    corecore