889 research outputs found
Profilin reduces aggregation and phase separation of huntingtin N-terminal fragments by preferentially binding to soluble monomers and oligomers
Continuous-Time Quantum Monte Carlo Algorithm for the Lattice Polaron
An efficient continuous-time path-integral Quantum Monte Carlo algorithm for
the lattice polaron is presented. It is based on Feynman's integration of
phonons and subsequent simulation of the resulting single-particle
self-interacting system. The method is free from the finite-size and
finite-time-step errors and works in any dimensionality and for any range of
electron-phonon interaction. The ground-state energy and effective mass of the
polaron are calculated for several models. The polaron spectrum can be measured
directly by Monte Carlo, which is of general interest.Comment: 5 pages, 4 figures, published versio
Type IIB Holographic Superfluid Flows
We construct fully backreacted holographic superfluid flow solutions in a
five-dimensional theory that arises as a consistent truncation of low energy
type IIB string theory. We construct a black hole with scalar and vector hair
in this theory, and study the phase diagram. As expected, the superfluid phase
ceases to exist for high enough superfluid velocity, but we show that the phase
transition between normal and superfluid phases is always second order. We also
analyze the zero temperature limit of these solutions. Interestingly, we find
evidence that the emergent IR conformal symmetry of the zero-temperature domain
wall is broken at high enough velocity.Comment: v3: Published version. Figures 5 and 6 corrected. 24 pages, 7 figure
Symmetries of Holographic Super-Minimal Models
We compute the asymptotic symmetry of the higher-spin supergravity theory in
AdS_3 and obtain an infinite-dimensional non-linear superalgebra, which we call
the super-W_infinity[lambda] algebra. According to the recently proposed
supersymmetric duality between higher-spin supergravity in an AdS_3 background
and the 't Hooft limit of the N=2 CP^n Kazama-Suzuki model on the boundary,
this symmetry algebra should agree with the 't Hooft limit of the chiral
algebra of the CFT, SW_n. We provide two nontrivial checks of the duality. By
comparing the algebras, we explicitly match the lowest-spin commutation
relations in the super-W_infinity[lambda] with the corresponding commutation
relations in the 't Hooft limit on the CFT side. We also consider the
degenerate representations of the two algebras and find that the spectra of the
chiral primary fields are identical.Comment: 33 pages, references added, some errors corrected, discussions about
the truncation of the shs[lambda] algebra and reobtaining the original
shs[lambda] algebra from the super-W_infinity[lambda] algebra adde
p-Wave holographic superconductors with Weyl corrections
We study the (3+1) dimensional p-wave holographic superconductors with Weyl
corrections both numerically and analytically. We describe numerically the
behavior of critical temperature with respect to charge density
in a limited range of Weyl coupling parameter and we find in general
the condensation becomes harder with the increase of parameter . In
strong coupling limit of Yang-Mills theory, we show that the minimum value of
obtained from analytical approach is in good agreement with the
numerical results, and finally show how we got remarkably a similar result in
the critical exponent 1/2 of the chemical potential and the order
parameter with the numerical curves of superconductors.Comment: 7 pages, 1 figure, 1 table. One refrence added, presentations
improve
Electromagnetic superconductivity of vacuum induced by strong magnetic field
The quantum vacuum may become an electromagnetic superconductor in the
presence of a strong external magnetic field of the order of 10^{16} Tesla. The
magnetic field of the required strength (and even stronger) is expected to be
generated for a short time in ultraperipheral collisions of heavy ions at the
Large Hadron Collider. The superconducting properties of the new phase appear
as a result of a magnetic-field-assisted condensation of quark-antiquark pairs
with quantum numbers of electrically charged rho mesons. We discuss
similarities and differences between the suggested superconducting state of the
quantum vacuum, a conventional superconductivity and the Schwinger pair
creation. We argue qualitatively and quantitatively why the superconducting
state should be a natural ground state of the vacuum at the sufficiently strong
magnetic field. We demonstrate the existence of the superconducting phase using
both the Nambu-Jona-Lasinio model and an effective bosonic model based on the
vector meson dominance (the rho-meson electrodynamics). We discuss various
properties of the new phase such as absence of the Meissner effect, anisotropy
of superconductivity, spatial inhomogeneity of ground state, emergence of a
neutral superfluid component in the ground state and presence of new
topological vortices in the quark-antiquark condensates.Comment: 37 pages, 14 figures, to appear in Lect. Notes Phys. "Strongly
interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K.
Landsteiner, A. Schmitt, H.-U. Ye
Thermodynamics of Higher Spin Black Holes in AdS
We discuss the thermodynamics of recently constructed three-dimensional
higher spin black holes in SL(N,R)\times SL(N,R) Chern-Simons theory with
generalized asymptotically-anti-de Sitter boundary conditions. From a
holographic perspective, these bulk theories are dual to two-dimensional CFTs
with W_N symmetry algebras, and the black hole solutions are dual to thermal
states with higher spin chemical potentials and charges turned on. Because the
notion of horizon area is not gauge-invariant in the higher spin theory, the
traditional approaches to the computation of black hole entropy must be
reconsidered. One possibility, explored in the recent literature, involves
demanding the existence of a partition function in the CFT, and consistency
with the first law of thermodynamics. This approach is not free from
ambiguities, however, and in particular different definitions of energy result
in different expressions for the entropy. In the present work we show that
there are natural definitions of the thermodynamically conjugate variables that
follow from careful examination of the variational principle, and moreover
agree with those obtained via canonical methods. Building on this intuition, we
derive general expressions for the higher spin black hole entropy and free
energy which are written entirely in terms of the Chern-Simons connections, and
are valid for both static and rotating solutions. We compare our results to
other proposals in the literature, and provide a new and efficient way to
determine the generalization of the Cardy formula to a situation with higher
spin charges.Comment: 30 pages, PDFLaTeX; v2: typos corrected, explicit expressions for the
free energy adde
Zoonoses in the European Union: origin, distribution and dynamics:the EFSA-ECDC summary report 2009
Constraints on massive gravity theory from big bang nucleosynthesis
The massive gravity cosmology is studied in the scenario of big bang
nucleosynthesis. By making use of current bounds on the deviation from the
fractional mass, we derive the constraints on the free parameters of the
theory. The cosmological consequences of the model are also discussed in the
framework of the PAMELA experiment.Comment: 5 page
- …
