889 research outputs found

    Continuous-Time Quantum Monte Carlo Algorithm for the Lattice Polaron

    Full text link
    An efficient continuous-time path-integral Quantum Monte Carlo algorithm for the lattice polaron is presented. It is based on Feynman's integration of phonons and subsequent simulation of the resulting single-particle self-interacting system. The method is free from the finite-size and finite-time-step errors and works in any dimensionality and for any range of electron-phonon interaction. The ground-state energy and effective mass of the polaron are calculated for several models. The polaron spectrum can be measured directly by Monte Carlo, which is of general interest.Comment: 5 pages, 4 figures, published versio

    Type IIB Holographic Superfluid Flows

    Get PDF
    We construct fully backreacted holographic superfluid flow solutions in a five-dimensional theory that arises as a consistent truncation of low energy type IIB string theory. We construct a black hole with scalar and vector hair in this theory, and study the phase diagram. As expected, the superfluid phase ceases to exist for high enough superfluid velocity, but we show that the phase transition between normal and superfluid phases is always second order. We also analyze the zero temperature limit of these solutions. Interestingly, we find evidence that the emergent IR conformal symmetry of the zero-temperature domain wall is broken at high enough velocity.Comment: v3: Published version. Figures 5 and 6 corrected. 24 pages, 7 figure

    Symmetries of Holographic Super-Minimal Models

    Full text link
    We compute the asymptotic symmetry of the higher-spin supergravity theory in AdS_3 and obtain an infinite-dimensional non-linear superalgebra, which we call the super-W_infinity[lambda] algebra. According to the recently proposed supersymmetric duality between higher-spin supergravity in an AdS_3 background and the 't Hooft limit of the N=2 CP^n Kazama-Suzuki model on the boundary, this symmetry algebra should agree with the 't Hooft limit of the chiral algebra of the CFT, SW_n. We provide two nontrivial checks of the duality. By comparing the algebras, we explicitly match the lowest-spin commutation relations in the super-W_infinity[lambda] with the corresponding commutation relations in the 't Hooft limit on the CFT side. We also consider the degenerate representations of the two algebras and find that the spectra of the chiral primary fields are identical.Comment: 33 pages, references added, some errors corrected, discussions about the truncation of the shs[lambda] algebra and reobtaining the original shs[lambda] algebra from the super-W_infinity[lambda] algebra adde

    p-Wave holographic superconductors with Weyl corrections

    Full text link
    We study the (3+1) dimensional p-wave holographic superconductors with Weyl corrections both numerically and analytically. We describe numerically the behavior of critical temperature TcT_{c} with respect to charge density ρ\rho in a limited range of Weyl coupling parameter γ\gamma and we find in general the condensation becomes harder with the increase of parameter γ\gamma. In strong coupling limit of Yang-Mills theory, we show that the minimum value of TcT_{c} obtained from analytical approach is in good agreement with the numerical results, and finally show how we got remarkably a similar result in the critical exponent 1/2 of the chemical potential μ\mu and the order parameter with the numerical curves of superconductors.Comment: 7 pages, 1 figure, 1 table. One refrence added, presentations improve

    Electromagnetic superconductivity of vacuum induced by strong magnetic field

    Full text link
    The quantum vacuum may become an electromagnetic superconductor in the presence of a strong external magnetic field of the order of 10^{16} Tesla. The magnetic field of the required strength (and even stronger) is expected to be generated for a short time in ultraperipheral collisions of heavy ions at the Large Hadron Collider. The superconducting properties of the new phase appear as a result of a magnetic-field-assisted condensation of quark-antiquark pairs with quantum numbers of electrically charged rho mesons. We discuss similarities and differences between the suggested superconducting state of the quantum vacuum, a conventional superconductivity and the Schwinger pair creation. We argue qualitatively and quantitatively why the superconducting state should be a natural ground state of the vacuum at the sufficiently strong magnetic field. We demonstrate the existence of the superconducting phase using both the Nambu-Jona-Lasinio model and an effective bosonic model based on the vector meson dominance (the rho-meson electrodynamics). We discuss various properties of the new phase such as absence of the Meissner effect, anisotropy of superconductivity, spatial inhomogeneity of ground state, emergence of a neutral superfluid component in the ground state and presence of new topological vortices in the quark-antiquark condensates.Comment: 37 pages, 14 figures, to appear in Lect. Notes Phys. "Strongly interacting matter in magnetic fields" (Springer), edited by D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Ye

    Thermodynamics of Higher Spin Black Holes in AdS3_3

    Get PDF
    We discuss the thermodynamics of recently constructed three-dimensional higher spin black holes in SL(N,R)\times SL(N,R) Chern-Simons theory with generalized asymptotically-anti-de Sitter boundary conditions. From a holographic perspective, these bulk theories are dual to two-dimensional CFTs with W_N symmetry algebras, and the black hole solutions are dual to thermal states with higher spin chemical potentials and charges turned on. Because the notion of horizon area is not gauge-invariant in the higher spin theory, the traditional approaches to the computation of black hole entropy must be reconsidered. One possibility, explored in the recent literature, involves demanding the existence of a partition function in the CFT, and consistency with the first law of thermodynamics. This approach is not free from ambiguities, however, and in particular different definitions of energy result in different expressions for the entropy. In the present work we show that there are natural definitions of the thermodynamically conjugate variables that follow from careful examination of the variational principle, and moreover agree with those obtained via canonical methods. Building on this intuition, we derive general expressions for the higher spin black hole entropy and free energy which are written entirely in terms of the Chern-Simons connections, and are valid for both static and rotating solutions. We compare our results to other proposals in the literature, and provide a new and efficient way to determine the generalization of the Cardy formula to a situation with higher spin charges.Comment: 30 pages, PDFLaTeX; v2: typos corrected, explicit expressions for the free energy adde

    Constraints on massive gravity theory from big bang nucleosynthesis

    Full text link
    The massive gravity cosmology is studied in the scenario of big bang nucleosynthesis. By making use of current bounds on the deviation from the fractional mass, we derive the constraints on the free parameters of the theory. The cosmological consequences of the model are also discussed in the framework of the PAMELA experiment.Comment: 5 page
    corecore