1,151 research outputs found

    The 25 October 2010 Mentawai tsunami earthquake (M_w 7.8) and the tsunami hazard presented by shallow megathrust ruptures

    Get PDF
    The 25 October 2010 Mentawai, Indonesia earthquake (M_w 7.8) ruptured the shallow portion of the subduction zone seaward of the Mentawai islands, off-shore of Sumatra, generating 3 to 9 m tsunami run-up along southwestern coasts of the Pagai Islands that took at least 431 lives. Analyses of teleseismic P, SH and Rayleigh waves for finite-fault source rupture characteristics indicate ∌90 s rupture duration with a low rupture velocity of ∌1.5 km/s on the 10° dipping megathrust, with total slip of 2–4 m over an ∌100 km long source region. The seismic moment-scaled energy release is 1.4 × 10^(−6), lower than 2.4 × 10^(−6) found for the 17 July 2006 Java tsunami earthquake (M_w 7.8). The Mentawai event ruptured up-dip of the slip region of the 12 September 2007 Kepulauan earthquake (M_w 7.9), and together with the 4 January 1907 (M 7.6) tsunami earthquake located seaward of Simeulue Island to the northwest along the arc, demonstrates the significant tsunami generation potential for shallow megathrust ruptures in regions up-dip of great underthrusting events in Indonesia and elsewhere

    Rupture Process of the 2004 Sumatra-Andaman Earthquake

    Full text link

    Constraining melt geometries beneath the Afar Depression, Ethiopia from teleseismic receiver functions: the anisotropic H-Îș stacking technique

    Get PDF
    Understanding the nature of the crust has long been a goal for seismologists when imaging the Earth. This is particularly true in volcanic regions where imaging melt storage and migration can have important implications for the size and nature of an eruption. Receiver functions and the H-Îș stacking (HÎș) technique are often used to constrain crustal thickness (H) and the ratio of P to S wave velocities (Îș). In this paper, I show that it is essential to consider anisotropy when performing HÎș. I show that in a medium with horizontally transverse isotropy a strong variation in Îș with back azimuth is present, which characterizes the anisotropic medium. In a vertically transverse isotropic medium, no variation in Îș with back azimuth is observed, but Îș is increased across all back azimuths. Thus, estimates of Îș are more difficult to relate to composition than previously thought. I extend these models to melt-induced anisotropy and show that similar patterns are observed, but with more significant variations and increases in Îș. Based on these observations, I develop a new anisotropic H-Îș stacking technique which inverts HÎș data for melt fraction, aspect ratio, and orientation of melt inclusions. I apply this to data for the Afar Depression and show that melt is stored in interconnected stacked sills in the lower crust, which likely supply the recent volcanic eruptions and dike intrusions. This new technique can be applied to any anisotropic medium where it can provide constraints on the average crustal anisotropy

    Mesons from global Anti-de Sitter space

    Get PDF
    In the context of gauge/gravity duality, we study both probe D7-- and probe D5--branes in global Anti-de Sitter space. The dual field theory is N=4 theory on R x S^3 with added flavour. The branes undergo a geometrical phase transition in this geometry as function of the bare quark mass m_q in units of 1/R with R the S^3 radius. The meson spectra are obtained from fluctuations of the brane probes. First, we study them numerically for finite quark mass through the phase transition. Moreover, at zero quark mass we calculate the meson spectra analytically both in supergravity and in free field theory on R x S^3 and find that the results match: For the chiral primaries, the lowest level is given by the zero point energy or by the scaling dimension of the operator corresponding to the fluctuations, respectively. The higher levels are equidistant. Similar results apply to the descendents. Our results confirm the physical interpretation that the mesons cannot pair-produce any further when their zero-point energy exceeds their binding energy.Comment: 43 pages, 8 figures, references edited, few typos corrected, updated to match the published versio

    Holographic Flavor Transport in Arbitrary Constant Background Fields

    Full text link
    We use gauge-gravity duality to compute a new transport coefficient associated with a number Nf of massive N=2 supersymmetric hypermultiplet fields propagating through an N=4 SU(Nc) super-Yang-Mills theory plasma in the limits of large Nc and large 't Hooft coupling, with Nf << Nc. We introduce a baryon number density as well as arbitrary constant electric and magnetic fields, generalizing previous calculations by including a magnetic field with a component parallel to the electric field. We can thus compute all components of the conductivity tensor associated with transport of baryon number charge, including a component never before calculated in gauge-gravity duality. We also compute the contribution that the flavor degrees of freedom make to the stress-energy tensor, which exhibits divergences associated with the rates of energy and momentum loss of the flavor degrees of freedom. We discuss two currents that are free from these divergences, one of which becomes anomalous when the magnetic field has a component parallel to the electric field and hence may be related to recent study of charge transport in the presence of anomalies.Comment: 27 page

    Mantle Transition Zone Discontinuities beneath the Contiguous United States

    Get PDF
    Using over 310,000 high-quality radial receiver functions recorded by the USArray and other seismic stations in the contiguous United States, the depths of the 410 km and 660 km discontinuities (d410 and d660) are mapped in over 1,000 consecutive overlapping circles with a radius of 1⁰. The average mantle transition zone (MTZ) thickness for both the western and central/eastern U.S. is within 3 km from the global average of 250 km, suggesting an overall normal MTZ temperature beneath both areas. The Pacific Coast Ranges and the southern Basin and Range Province are underlain by a depressed d410, indicating higher-than-normal temperature in the upper MTZ. The proposed Yellowstone and Raton hot spots are not associated with clear undulations of the MTZ discontinuities, but d410 beneath another proposed hot spot, Bermuda, is depressed significantly and d660 has a normal depth. Low-temperature regions are found in the upper MTZ associated with the subducted Juan de Fuca slab beneath the northern Rocky Mountains and in two circular areas beneath the northern Basin and Range Province and the southern Colorado Plateau. Part of the Great Plains is characterized by a depressed d660. This observation, when combined with results from seismic tomography, suggests the existence of a cold region in the lower MTZ, probably associated with subducted Farallon slab segments

    Doped two orbital chains with strong Hund's rule couplings - ferromagnetism, spin gap, singlet and triplet pairings

    Full text link
    Different models for doping of two-orbital chains with mobile S=1/2S=1/2 fermions and strong, ferromagnetic (FM) Hund's rule couplings stabilizing the S=1 spins are investigated by density matrix renormalization group (DMRG) methods. The competition between antiferromagnetic (AF) and FM order leads to a rich phase diagram with a narrow FM region for weak AF couplings and strongly enhanced triplet pairing correlations. Without a level difference between the orbitals, the spin gap persists upon doping, whereas gapless spin excitations are generated by interactions among itinerant polarons in the presence of a level difference. In the charge sector we find dominant singlet pairing correlations without a level difference, whereas upon the inclusion of a Coulomb repulsion between the orbitals or with a level difference, charge density wave (CDW) correlations decay slowest. The string correlation functions remain finite upon doping for all models.Comment: 9pages, 9figure

    Origin of Spin Incommensurability in Hole-doped S=1 Y2−xCaxBaNiO5\rm Y_{2-x}Ca_x Ba Ni O_5 Chains

    Full text link
    Spin incommensurability has been recently experimentally discovered in the hole-doped Ni-oxide chain compound Y2−xCaxBaNiO5\rm Y_{2-x}Ca_x Ba Ni O_5 (G. Xu {\it al.}, Science {\bf 289}, 419 (2000)). Here a two orbital model for this material is studied using computational techniques. Spin IC is observed in a wide range of densities and couplings. The phenomenon originates in antiferromagnetic correlations ``across holes'' dynamically generated to improve hole movement, as it occurs in the one-dimensional Hubbard model and in recent studies of the two-dimensional extended t-J model. The close proximity of ferromagnetic and phase-separated states in parameter space are also discussed.Comment: RevTex, 4 pages, 4 figures (eps
    • 

    corecore