90 research outputs found

    Summertime elemental mercury exchange of temperate grasslands on an ecosystem-scale

    Get PDF
    In order to estimate the air-surface mercury exchange of grasslands in temperate climate regions, fluxes of gaseous elemental mercury (GEM) were measured at two sites in Switzerland and one in Austria during summer 2006. Two classic micrometeorological methods (aerodynamic and modified Bowen ratio) have been applied to estimate net GEM exchange rates and to determine the response of the GEM flux to changes in environmental conditions (e. g. heavy rain, summer ozone) on an ecosystem-scale. Both methods proved to be appropriate to estimate fluxes on time scales of a few hours and longer. Average dry deposition rates up to 4.3 ng m(-2) h(-1) and mean deposition velocities up to 0.10 cm s(-1) were measured, which indicates that during the active vegetation period temperate grasslands are a small net sink for atmospheric mercury. With increasing ozone concentrations depletion of GEM was observed, but could not be quantified from the flux signal. Night-time deposition fluxes of GEM were measured and seem to be the result of mercury co-deposition with condensing water. Effects of grass cuts could also be observed, but were of minor magnitude

    Quantification of methane emissions from waste water treatment plants

    Get PDF
    Quantification of gaseous emissions from waste water treatment plants (WWTPs) is challenging due to the heterogeneity of the emissions in space and time. The inverse dispersion method (IDM) using concentration and turbulence measurements in combination with a backward Lagrangian stochastic (bLS) dispersion model based on Flesch et al. (2004) is a promising option. It is increasingly used to determine gaseous emissions from confined sources (Flesch et al., 2009; VanderZaag et al., 2014), as it offers high flexibility at reasonable costs. For the application on WWTPs the bLS model assumption of spatially homogeneous turbulence, which implies absence of obstacles as buildings and trees that disturbe the flow, is often not fulfilled. However, studies showed that with the correct instrument setup and data filtering the bLS can be used for emission estimates. Methane emissions from two WWTPs of different type and size were quantified using the IDM with the bLS model. Methane concentrations were analysed with open-path tunable diode laser spectrometers (GasFinder, Boreal Laser, Inc., Edmonton, Alberta, Canada) placed up- and downwind of the source. At each site at least 20 days of measurements averaged to 30-minutes intervals are available. Here we present first results from these two WWTPs emission estimates

    Using the inverse dispersion method to determine methane emissions from biogas plants and wastewater treatment plants with complex source configurations

    Get PDF
    Wastewater treatment plants (WWTPs) and biogas plants (BGPs) are significant sources of methane (CH4), with a combined share of around 40 % within the waste sector of the Swiss national emission inventory. We conducted whole-plant CH4 emission measurements at two WWTPs and four agricultural BGPs in Switzerland using the inverse dispersion method (IDM). This involved open-path concentration measurements up- and downwind of the plant in combination with a backward Lagrangian stochastic (bLS) model. WWTPs in particular consist of multiple CH4 sources with different areas and emission strengths. For the combination of the individual emission sources in the bLS modelling, three different calculation approaches with different levels of detail were applied: (i) single source over enveloping polygon area, (ii) uniform emission density for all individual source areas, (iii) specified relative weighting of individual sources based on literature data. Average CH4 emissions for WWTP 1 and WWTP 2 were 0.82 kg h-1 and 0.61 kg h-1 and scaled to population equivalents (PE) 166 g PE-1 y-1 and 381 g PE-1 y-1, respectively. BGPs CH4 emissions varied between 0.39 kg h-1 and 2.22 kg h-1, corresponding to less than 5 % of the plants’ CH4 production. The highest numbers were due to measurements during other than normal operating conditions. The emissions of WWTPs and BGPs comply with literature values. Approach (iii) with source weighting led to a difference of up to 43 % for the two WWTPs compared to the assumption of uniform emissions. Furthermore, we demonstrate how multiple open-path concentration measurements can be combined and how the measurements can be corrected for nearby external CH4 sources not belonging to the investigated plants. The results of the present study contribute to improved emission data from the waste sector

    Influence of temperature and high acetate concentrations on methanogenensis in lake sediment slurries

    Get PDF
    Methanogenesis from main methane precursors H2/CO2 and acetate was investigated in a temperature range of 2-70 °C using sediments from Lake Baldegg, Switzerland. Psychrophilic, psychrotrophic, mesophilic, and thermophilic methanogenic microbial communities were enriched by incubations for 1-3 months of nonamended sediment slurries at 5, 15, 30, and 50 °C. Isotope experiments with slurries amended with 14C-labeled bicarbonate and 14C-2-acetate showed that in the psychrophilic community (enriched at 5 °C), about 95% of methane originated from acetate, in contrast to the thermophilic community (50 °C) where up to 98% of methane was formed from bicarbonate. In the mesophilic community (30 °C), acetate was the precursor of about 80% of the methane produced. When the hydrogen-carbon dioxide mixture (H2/CO2) was used as a substrate, it was directly converted to methane under thermophilic conditions (70 and 50 °C). Under mesophilic conditions (30 °C), both pathways, hydrogenotrophic and acetoclastic, were observed. At low temperatures (5 and 15 °C), H2/CO2 was converted into methane by a two-step process; first acetate was formed, followed by methane production from acetate. When slurries were incubated at high partial pressures of H2/CO2, the high concentrations of acetate produced of more than 20 mM inhibited acetoclastic methanogenesis at a temperature below 15 °C. However, slow adaptation of the psychrophilic microbial community to high acetate concentrations was observe

    Reactive nitrogen fluxes over peatland and forest ecosystems using micrometeorological measurement techniques

    Get PDF
    Interactions of reactive nitrogen (Nr) compounds between the atmosphere and the earth's surface play a key role in atmospheric chemistry and in understanding nutrient cycling of terrestrial ecosystems. While continuous observations of inert greenhouse gases through micrometeorological flux measurements have become a common procedure, information about temporal dynamics and longer-term budgets of Nr compounds is still extremely limited. Within the framework of the research projects NITROSPHERE and FORESTFLUX, field campaigns were carried out to investigate the biosphere–atmosphere exchange of selected Nr compounds over different land surfaces. The aim of the campaigns was to test and establish novel measurement techniques in eddy-covariance setups for continuous determination of surface fluxes of ammonia (NH3) and total reactive nitrogen (ΣNr) using two different analytical devices. While high-frequency measurements of NH3 were conducted with a quantum cascade laser (QCL) absorption spectrometer, a custom-built converter called Total Reactive Atmospheric Nitrogen Converter (TRANC) connected and operated upstream of a chemiluminescence detector (CLD) was used for the measurement of ΣNr. As high-resolution data of Nr surface–atmosphere exchange are still scarce but highly desired for testing and validating local inferential and larger-scale models, we provide access to campaign data including concentrations, fluxes, and ancillary measurements of meteorological parameters. Campaigns (n=4) were carried out in natural (forest) and semi-natural (peatland) ecosystem types. The published datasets stress the importance of recent advancements in laser spectrometry and help improve our understanding of the temporal variability of surface–atmosphere exchange in different ecosystems, thereby providing validation opportunities for inferential models simulating the exchange of reactive nitrogen. The dataset has been placed in the Zenodo repository (https://doi.org/10.5281/zenodo.4513854; Brümmer et al., 2022) and contains individual data files for each campaign

    Assessment of the inverse dispersion method for the determination of methane emissions from a dairy housing

    Get PDF
    Methane (CH4) emissions from dairy housings, mainly originating from enteric fermentation of ruminating animals, are a significant source of greenhouse gases. The quantification of emissions from naturally ventilated dairy housings is challenging due to the spatial distribution of sources (animals, housing areas) and variable air exchange. The inverse dispersion method (IDM) is a promising option, which is increasingly used to determine gaseous emissions from stationary sources, as it offers high flexibility in the application at reasonable costs. We used a backward Lagrangian stochastic model combined with concentration measurements by open-path tunable diode laser spectrometers placed up- and downwind of a naturally ventilated housing with 40 dairy cows to determine the CH4 emissions. The average emissions per livestock unit (LU) were 317 (±44) g LU−1 d−1 and 267 (±43) g LU−1 d−1 for the first and second campaign, in September – October and November – December, respectively. For each campaign, inhouse tracer ratio measurements (iTRM) were conducted in parallel during two subperiods. For simultaneous measurements, IDM showed average emissions which were lower by 8% and 1% than that of iTRM, respectively, for the two campaigns. The differences are within the uncertainty range of any of the two methods. The IDM CH4 emissions were further analysed by wind direction and atmospheric stability and no differences in emissions were found. Overall, IDM showed its aptitude to accurately determine CH4 emissions from dairy housings or other stationary sources if the site allows adequate placement of sensors up- and downwind in the prevailing wind direction. To acquire reliable emission data, depending on the data loss during measurements due to quality filtering or instrument failure, a measuring time of at least 10 days is required

    Influence of temperature and high acetate concentrations on methanogenensis in lake sediment slurries

    Get PDF
    Methanogenesis from main methane precursors H2/CO2 and acetate was investigated in a temperature range of 2–70 °C using sediments from Lake Baldegg, Switzerland. Psychrophilic, psychrotrophic, mesophilic, and thermophilic methanogenic microbial communities were enriched by incubations for 1–3 months of nonamended sediment slurries at 5, 15, 30, and 50 °C. Isotope experiments with slurries amended with 14C-labeled bicarbonate and 14C-2-acetate showed that in the psychrophilic community (enriched at 5 °C), about 95% of methane originated from acetate, in contrast to the thermophilic community (50 °C) where up to 98% of methane was formed from bicarbonate. In the mesophilic community (30 °C), acetate was the precursor of about 80% of the methane produced. When the hydrogen–carbon dioxide mixture (H2/CO2) was used as a substrate, it was directly converted to methane under thermophilic conditions (70 and 50 °C). Under mesophilic conditions (30 °C), both pathways, hydrogenotrophic and acetoclastic, were observed. At low temperatures (5 and 15 °C), H2/CO2 was converted into methane by a two-step process; first acetate was formed, followed by methane production from acetate. When slurries were incubated at high partial pressures of H2/CO2, the high concentrations of acetate produced of more than 20 mM inhibited acetoclastic methanogenesis at a temperature below 15 °C. However, slow adaptation of the psychrophilic microbial community to high acetate concentrations was observed

    Estimating the greenhouse gas fluxes of European grassland with a process based model: Part 1. Model evaluation from in-situ measurements

    Get PDF
    International audienceWe improved a process-oriented biogeochemical model of carbon and nitrogen cycling in grasslands and tested it against in situ measurements of biomass and CO2 and CH4 fluxes at five European grassland sites. The new version of the model (PASIM) calculates the growth and senescence of aboveground vegetation biomass accounting for sporadic removals when the grassland is cut and for continuous removals when it is grazed. Limitations induced by high leaf area index (LAI), soil water deficits and aging of leaves are also included. We added to this a simple empirical formulation to account for the detrimental impact on vegetation of trampling and excreta by grazing animals. Finally, a more realistic methane emission module than is currently used was introduced on the basis of the quality of the animals' diet. Evaluation of this improved version of PASIM is performed at (1) Laqueuille, France, on grassland continuously grazed by cattle with two plots of intensive and extensive grazing intensities, (2) Oensingen, Switzerland, on cut grassland with two fertilized and nonfertilized plots, and (3) Carlow, Ireland, on grassland that is both cut and grazed by cattle during the growing season. In addition, we compared the modeled animal CH4 emissions with in situ measurements on cattle for two grazing intensities at the grazed grassland site of Laqueuille. Altogether, when all improvements to the PASIM model are included, we found that the new parameterizations resulted into a better fit to the observed seasonal cycle of biomass and of measured CO2 and CH4 fluxes. However, the large uncertainties in measurements of biomass and LAI make simulation of biomass dynamics difficult to make. Also simulations for cut grassland are better than for grazed swards. This work paves the way for simulating greenhouse gas fluxes over grasslands in a spatially explicit manner, in order to quantify and understand the past, present and future role of grasslands in the greenhouse gas budget of the European continent

    Climate control of terrestrial carbon exchange across biomes and continents

    Get PDF
    Understanding the relationships between climate and carbon exchange by terrestrial ecosystems is critical to predict future levels of atmospheric carbon dioxide because of the potential accelerating effects of positive climate-carbon cycle feedbacks. However, directly observed relationships between climate and terrestrial CO2exchange with the atmosphere across biomes and continents are lacking. Here we present data describing the relationships between net ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy covariance method at 125 unique sites in various ecosystems over six continents with a total of 559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of mean annual temperature at mid- and high-latitudes, (2) a strong function of dryness at mid- and low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt (45°N). The sensitivity of NEE to mean annual temperature breaks down at ∼16 ®C (a threshold value of mean annual temperature), above which no further increase of CO,.2uptake with temperature was observed and dryness influence overrules temperature influence. © 2010 lOP Publishing Ltd
    • …
    corecore