879 research outputs found
Electrodynamics of an omega-band as deduced from optical and magnetometer data
We investigate an omega-band event that took place above northern Scandinavia
around 02:00–02:30 UT on 9 March 1999. In our analysis we use ground based
magnetometer, optical and riometer measurements together with satellite based
optical images. The optical and riometer data are used to estimate the
ionospheric Hall and Pedersen conductances, while ionospheric equivalent
currents are obtained from the magnetometer measurements. These data sets are
used as input in a local KRM calculation, which gives the ionospheric
potential electric field as output, thus giving us a complete picture of the
ionospheric electrodynamic state during the omega-band event.
<br><br>
The overall structure of the electric field and field-aligned current (FAC)
provided by the local KRM method are in good agreement with previous studies.
Also the <I><B>E</B></I>×<I><B>B</B></I> drift velocity calculated from the local
KRM solution is in good qualitative agreement with the plasma velocity
measured by the Finnish CUTLASS radar, giving further support for the new
local KRM method. The high-resolution conductance estimates allow us to
discern the detailed structure of the omega-band current system. The highest
Hall and Pedersen conductances, ~50 and ~25 S, respectively, are
found at the edges of the bright auroral tongue. Inside the tongue,
conductances are somewhat smaller, but still significantly higher than
typical background values. The electric field shows a converging pattern
around the tongues, and the field strength drops from ~40 mV/m found at
optically dark regions to ~10 mV/m inside the areas of enhanced
conductivity. Downward FAC flow in the dark regions, while upward currents
flow inside the auroral tongue. Additionally, sharp conductance gradients at
the edge of an auroral tongue are associated with narrow strips of intense
FACs, so that a strip of downward current flows at the eastern (leading) edge
and a similar strip of upward current is present at the western (trailing)
edge. The Joule heating follows the electric field pattern, so that it is
diminished inside the bright auroral tongue
Effect of CLIQ on training of HL-LHC quadrupole magnets
The high-luminosity LHC upgrade requires stronger than LHC low-beta
quadrupole magnets to reach the luminosity goals of the project. The project is
well advanced and HL-LHC quadrupole magnets are currently being commissioned in
US Labs (MQXFA magnets) and CERN (MQXFB magnets). Those are the first Nb3Sn
magnets to be used in any large particle accelerator. At development stages,
many Nb3Sn accelerator sub-scale models showed relatively slow training and
MQXFA magnets were projected to have low tens of quenches before reaching
operational field. Recently it was shown that dedicated capacitor-based devices
can affect Nb3Sn magnet training, and it was suggested that CLIQ, a
capacitor-based device intended for quench protection, can do too. The present
paper investigates effects on training likely induced by CLIQ, using the base
fact that only half the coils in a quadrupole experience upward current
modulation at quench because of capacitor discharge. The study encompasses all
MQXFA production magnets trained at BNL to date. No other high-statistics data
from identical magnets (series) with CLIQ protection exist so far. Implications
and opportunities stemming from data analysis are discussed and conclusions
drawn.Comment: Accepted versio
Fundamental scaling laws of on-off intermittency in a stochastically driven dissipative pattern forming system
Noise driven electroconvection in sandwich cells of nematic liquid crystals
exhibits on-off intermittent behaviour at the onset of the instability. We
study laser scattering of convection rolls to characterize the wavelengths and
the trajectories of the stochastic amplitudes of the intermittent structures.
The pattern wavelengths and the statistics of these trajectories are in
quantitative agreement with simulations of the linearized electrohydrodynamic
equations. The fundamental distribution law for the durations
of laminar phases as well as the power law of the amplitude distribution
of intermittent bursts are confirmed in the experiments. Power spectral
densities of the experimental and numerically simulated trajectories are
discussed.Comment: 20 pages and 17 figure
Spectral weight transfer in a disorder-broadened Landau level
In the absence of disorder, the degeneracy of a Landau level (LL) is
, where is the magnetic field, is the area of the sample
and is the magnetic flux quantum. With disorder, localized states
appear at the top and bottom of the broadened LL, while states in the center of
the LL (the critical region) remain delocalized. This well-known phenomenology
is sufficient to explain most aspects of the Integer Quantum Hall Effect (IQHE)
[1]. One unnoticed issue is where the new states appear as the magnetic field
is increased. Here we demonstrate that they appear predominantly inside the
critical region. This leads to a certain ``spectral ordering'' of the localized
states that explains the stripes observed in measurements of the local inverse
compressibility [2-3], of two-terminal conductance [4], and of Hall and
longitudinal resistances [5] without invoking interactions as done in previous
work [6-8].Comment: 5 pages 3 figure
Effects of a solar wind dynamic pressure increase in the magnetosphere and in the ionosphere
Peer reviewe
- …