182 research outputs found

    On-Surface Synthesis of Polypyridine: Strain Enforces Extended Linear Chains

    Get PDF
    Strain-induced on-surface transformations provide an appealing route to steer the selectivity towards desired products. Here, we demonstrate the selective on-surface synthesis of extended all-trans poly(2,6-pyridine) chains on Au(111). By combining high-resolution scanning tunneling and atomic force microscopy, we revealed the detailed chemical structure of the reaction products. Density functional theory calculations indicate that the synthesis of extended covalent structures is energetically favored over the formation of macrocycles, due to the minimization of internal strain. Our results consolidate the exploitation of internal strain relief as a driving force to promote selective on-surface reactions

    Indian health conditions.

    Get PDF
    This volume is a compendium of scholarly analyses of the health conditions that together constitute most of the illness borne by American Indians and Alaska Natives. Topics include; health intervention; cancer; cardiovascular diseases; diabetes; digestive system diseases; infant mortality; infectious diseases; maternal health; mental health and mental illness; musculosketetal system disease; oral disease; end-stage renal disease; respiratory diseases; violence; substance abuse; and accidental injuries. This publication was developed in 1986 and although, the data are several years old, much of the analyses and recommendations are still relevant today. It also serves as an important historical or reference document for the Indian Health Service. Each analysis provides an overview of a particular health condition as it affects the IHS service population nationwide and suggests, recommendations regarding the steps that IHS can take to reduce and eventually eliminate the described health problems

    Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process

    Get PDF
    BACKGROUND: Prostate cancer is characterized by heterogeneity in the clinical course that often does not correlate with morphologic features of the tumor. Metastasis reflects the most adverse outcome of prostate cancer, and to date there are no reliable morphologic features or serum biomarkers that can reliably predict which patients are at higher risk of developing metastatic disease. Understanding the differences in the biology of metastatic and organ confined primary tumors is essential for developing new prognostic markers and therapeutic targets. METHODS: Using Affymetrix oligonucleotide arrays, we analyzed gene expression profiles of 24 androgen-ablation resistant metastatic samples obtained from 4 patients and a previously published dataset of 64 primary prostate tumor samples. Differential gene expression was analyzed after removing potentially uninformative stromal genes, addressing the differences in cellular content between primary and metastatic tumors. RESULTS: The metastatic samples are highly heterogenous in expression; however, differential expression analysis shows that 415 genes are upregulated and 364 genes are downregulated at least 2 fold in every patient with metastasis. The expression profile of metastatic samples reveals changes in expression of a unique set of genes representing both the androgen ablation related pathways and other metastasis related gene networks such as cell adhesion, bone remodelling and cell cycle. The differentially expressed genes include metabolic enzymes, transcription factors such as Forkhead Box M1 (FoxM1) and cell adhesion molecules such as Osteopontin (SPP1). CONCLUSION: We hypothesize that these genes have a role in the biology of metastatic disease and that they represent potential therapeutic targets for prostate cancer

    Specificity and heregulin regulation of Ebp1 (ErbB3 binding protein 1) mediated repression of androgen receptor signalling

    Get PDF
    Although ErbB receptors have been implicated in the progression of prostate cancer, little is known about proteins that may mediate their interactions with the androgen receptor (AR). Ebp1, a protein cloned via its association with the ErbB3 receptor, binds the AR and inhibits androgen-regulated transactivation of wild-type AR in COS cells. As the complement of coregulators in different cells are important for AR activity, we determined the effect of Ebp1 on AR function in prostate cancer cell lines. In addition, we examined the regulation of Ebp1 function by the ErbB3/4 ligand heregulin (HRG). In this study, we demonstrate, using several natural AR-regulated promoters, that Ebp1 repressed transcriptional activation of wild-type AR in prostate cancer cell lines. Downregulation of Ebp1 expression in LNCaP cells using siRNA resulted in activation of AR in the absence of androgen. Ebp1 associated with ErbB3 in LNCaP cells in the absence of HRG, but HRG induced the dissociation of Ebp1 from ErbB3. In contrast, HRG treatment enhanced both the association of Ebp1 with AR and also the ability of Ebp1 to repress AR transactivation. These studies suggest that Ebp1 is an AR corepressor whose biological activity can be regulated by the ErbB3 ligand, HRG

    Hershey Medical Center Technical Workshop Report: Optimizing the design and interpretation of epidemiologic studies for assessing neurodevelopmental effects from in utero chemical exposure

    Get PDF
    Neurodevelopmental disabilities affect 3-8% of the 4 million babies born each year in the U.S. alone, with known etiology for less than 25% of those disabilities. Numerous investigations have sought to determine the role of environmental exposures in the etiology of a variety of human neurodevelopmental disorders (e.g., learning disabilities, attention deficit-hyperactivity disorder, intellectual disabilities) that are manifested in childhood, adolescence, and young adulthood. A comprehensive critical examination and discussion of the various methodologies commonly used in investigations is needed. The Hershey Medical Center Technical Workshop: Optimizing the design and interpretation of epidemiologic studies for assessing neurodevelopmental effects from in utero chemical exposure provided such a forum for examining these methodologies. The objective of the Workshop was to develop scientific consensus on the key principles and considerations for optimizing the design and interpretation of epidemiologic studies of in utero exposure to environmental chemicals and subsequent neurodevelopmental effects. (The Panel recognized that the nervous system develops post-natally and that critical periods of exposure can span several developmental life stages.) Discussions from the Workshop Panel generated 17 summary points representing key tenets of work in this field. These points stressed the importance of: a well-defined, biologically plausible hypothesis as the foundation of in utero studies for assessing neurodevelopmental outcomes; understanding of the exposure to the environmental chemical(s) of interest, underlying mechanisms of toxicity, and anticipated outcomes; the use of a prospective, longitudinal cohort design that, when possible, runs for periods of 2-5 years, and possibly even longer, in an effort to assess functions at key developmental epochs; measuring potentially confounding variables at regular, fixed time intervals; including measures of specific cognitive and social-emotional domains along with non-cognitive competence in young children, as well as comprehensive measures of health; consistency of research design protocols across studies (i.e., tests, covariates, and analysis styles) in an effort to improve interstudy comparisons; emphasis on design features that minimize introduction of systematic error at all stages of investigation: participant selection, data collection and analysis, and interpretation of results; these would include (but not be limited to) reducing selection bias, using double-blind designs, and avoiding post hoc formulation of hypotheses; a priori data analysis strategies tied to hypotheses and the overall research design, particularly for methods used to characterize and address confounders in any neurodevelopmental study; actual quantitative measurements of exposure, even if indirect, rather than methods based on subject recall; careful examination of standard test batteries to ensure that the battery is tailored to the age group as well as what is known about the specific neurotoxic effects on the developing nervous system; establishment of a system for neurodevelopmental surveillance for tracking the outcomes from in utero exposure across early developmental time periods to determine whether central nervous system injuries may be lying silent until developmentally challenged; ongoing exploration of computerized measures that are culturally and linguistically sensitive, and span the age range from birth into the adolescent years; routine incorporation of narrative in manuscripts concerning the possibility of spurious (i.e., false positive and false negative) test results in all research reportage (this can be facilitated by detailed, transparent reporting of design, covariates, and analyses so that others can attempt to replicate the study); forthright, disciplined, and intellectually honest treatment of the extent to which results of any study are conclusive--that is, how generalizable the results of the study are in terms of the implications for the individual study participants, the community studied, and human health overall; confinement of reporting to the actual research questions, how they were tested, and what the study found, and avoiding, or at least keeping to a minimum, any opinions or speculation concerning public health implications; education of clinicians and policymakers to critically read scientific reports, and to interpret study findings and conclusions appropriately; and recognition by investigators of their ethical duty to report negative as well as positive findings, and the importance of neither minimizing nor exaggerating these findings

    LNCaP Atlas: Gene expression associated with in vivo progression to castration-recurrent prostate cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is no cure for castration-recurrent prostate cancer (CRPC) and the mechanisms underlying this stage of the disease are unknown.</p> <p>Methods</p> <p>We analyzed the transcriptome of human LNCaP prostate cancer cells as they progress to CRPC <it>in vivo </it>using replicate LongSAGE libraries. We refer to these libraries as the LNCaP atlas and compared these gene expression profiles with current suggested models of CRPC.</p> <p>Results</p> <p>Three million tags were sequenced using <it>in vivo </it>samples at various stages of hormonal progression to reveal 96 novel genes differentially expressed in CRPC. Thirty-one genes encode proteins that are either secreted or are located at the plasma membrane, 21 genes changed levels of expression in response to androgen, and 8 genes have enriched expression in the prostate. Expression of 26, 6, 12, and 15 genes have previously been linked to prostate cancer, Gleason grade, progression, and metastasis, respectively. Expression profiles of genes in CRPC support a role for the transcriptional activity of the androgen receptor (<it>CCNH, CUEDC2, FLNA, PSMA7</it>), steroid synthesis and metabolism (<it>DHCR24, DHRS7</it>, <it>ELOVL5, HSD17B4</it>, <it>OPRK1</it>), neuroendocrine (<it>ENO2, MAOA, OPRK1, S100A10, TRPM8</it>), and proliferation (<it>GAS5</it>, <it>GNB2L1</it>, <it>MT-ND3</it>, <it>NKX3-1</it>, <it>PCGEM1</it>, <it>PTGFR</it>, <it>STEAP1</it>, <it>TMEM30A</it>), but neither supported nor discounted a role for cell survival genes.</p> <p>Conclusions</p> <p>The <it>in vivo </it>gene expression atlas for LNCaP was sequenced and support a role for the androgen receptor in CRPC.</p
    • …
    corecore