6 research outputs found

    A Study of Ordered Ag-Groupoids in terms of Semilattices via Smallest (Fuzzy) Ideals

    No full text
    An ordered AG-groupoid can be referred to as an ordered left almost semigroup, as the main difference between an ordered semigroup and an ordered AG-groupoid is the switching of an associative law. In this paper, we define the smallest one-sided ideals in an ordered AG-groupoid and use them to characterize a strongly regular class of a unitary ordered AG-groupoid along with its semilattices and fuzzy one-sided ideals. We also introduce the concept of an ordered AG⁎⁎⁎-groupoid and investigate its structural properties by using the generated ideals and fuzzy one-sided ideals. These concepts will verify the existing characterizations and will help in achieving more generalized results in future works

    Characterizations of ordered Γ-Abel-Grassmann's groupoids

    No full text
    In this paper, we introduced the concept of ordered Γ-AG-groupoids, Γ-ideals and some classes in ordered Γ-AG-groupoids. We have shown that every Γ-ideal in an ordered Γ-AG**-groupoid S is Γ-prime if and only if it is Γ-idempotent and the set of Γ-ideals of S is Γ-totally ordered under inclusion. We have proved that the set of Γ-ideals of S form a semilattice, also we have investigated some classes of ordered Γ-AG**-groupoid and it has shown that weakly regular, intra-regular, right regular, left regular, left quasi regular, completely regular and (2,2)-regular ordered Γ-AG**-groupoids coincide. Further we have proved that every intra-regular ordered Γ-AG**-groupoid is regular but the converse is not true in general. Furthermore we have shown that non-associative regular, weakly regular, intra-regular, right regular, left regular, left quasi regular, completely regular, (2,2)-regular and strongly regular Γ-AG*-groupoids do not exist
    corecore