4 research outputs found
Whole Genome Characterization of a Few EMS-Induced Mutants of Upland Rice Variety Nagina 22 Reveals a Staggeringly High Frequency of SNPs Which Show High Phenotypic Plasticity Towards the Wild-Type
The Indian initiative, in creating mutant resources for the functional genomics in rice, has been instrumental in the development of 87,000 ethylmethanesulfonate (EMS)-induced mutants, of which 7,000 are in advanced generations. The mutants have been created in the background of Nagina 22, a popular drought- and heat-tolerant upland cultivar. As it is a pregreen revolution cultivar, as many as 573 dwarf mutants identified from this resource could be useful as an alternate source of dwarfing. A total of 541 mutants, including the macromutants and the trait-specific ones, obtained after appropriate screening, are being maintained in the mutant garden. Here, we report on the detailed characterizations of the 541 mutants based on the distinctness, uniformity, and stability (DUS) descriptors at two different locations. About 90% of the mutants were found to be similar to the wild type (WT) with high similarity index (>0.6) at both the locations. All 541 mutants were characterized for chlorophyll and epicuticular wax contents, while a subset of 84 mutants were characterized for their ionomes, namely, phosphorous, silicon, and chloride contents. Genotyping of these mutants with 54 genomewide simple sequence repeat (SSR) markers revealed 93% of the mutants to be either completely identical to WT or nearly identical with just one polymorphic locus. Whole genome resequencing (WGS) of four mutants, which have minimal differences in the SSR fingerprint pattern and DUS characters from the WT, revealed a staggeringly high number of single nucleotide polymorphisms (SNPs) on an average (16,453 per mutant) in the genic sequences. Of these, nearly 50% of the SNPs led to non-synonymous codons, while 30% resulted in synonymous codons. The number of insertions and deletions (InDels) varied from 898 to 2,595, with more than 80% of them being 1–2 bp long. Such a high number of SNPs could pose a serious challenge in identifying gene(s) governing the mutant phenotype by next generation sequencing-based mapping approaches such as Mutmap. From the WGS data of the WT and the mutants, we developed a genic resource of the WT with a novel analysis pipeline. The entire information about this resource along with the panicle architecture of the 493 mutants is made available in a mutant database EMSgardeN22 (http://14.139.229.201/EMSgardeN22)
Not Available
Not AvailableRice is an important staple food grain consumed by most of the population around the world. With climate and environmental changes, rice has undergone a tremendous stress state which has impacted crop production and productivity. Plant growth hormones are essential component that controls the overall outcome of the growth and development of the plant. Cytokinin is a hormone that plays an important role in plant immunity and defense systems. Trans-zeatin is an active form of cytokinin that can affect plant growth which is mediated by a multi-step two-component phosphorelay system that has different roles in various developmental stages. Systems biology is an approach for pathway analysis to trans-zeatin treated rice that could provide a deep understanding of different molecules associated with them. In this study, we have used a weighted gene co-expression network analysis method to identify the functional modules and hub genes involved in the cytokinin pathway. We have identified nine functional modules comprising of different hub genes which contribute to the cytokinin signaling route. The biological significance of these identified hub genes has been tested by applying well-proven statistical techniques to establish the association with the experimentally validated QTLs and annotated by the DAVID server. The establishment of key genes in different pathways has been confirmed. These results will be useful to design new stress-resistant cultivars which can provide sustainable yield in stress-specific conditions.Not Availabl
Not Available
Not AvailableRice is the most important food crop both in value and
volume for the Asian population. Frequent drought, flood
and salinity stresses exacerbated by global climate change
adversely affect rice production in more than fifty percent
of the rice growing areas. Green revolution high yielding
varieties carrying sd1 dwarfing gene have almost fully
replaced the traditional climate resilient landraces and
varieties of rice. However, these were bred primarily for
yield under high input conditions and therefore are sensitive
to adverse climatic conditions. Hence, there is urgent need
to combine the high productivity with climate resilience.
Knowledge of rice genome and genes for tolerance to
different abiotic stresses provided us an opportunity to
transfer favorable alleles of these genes into high yielding
varieties through genomics-assisted backcross breeding
through multi-institutional networks. Six consistent
genomic regions (QTLs) for grain yield under drought;
namely qDTY1.1, qDTY2.1, qDTY2.2, qDTY3.1, qDTY3.2 and
qDTY12.1 have been transferred to flood tolerant versions
of mega varieties of rice, Swarna, Samba Mahsuri and IR 64.
To address the problem of flash flooding qSUB1 QTL has
been transferred to nine popular rice varieties, namely ADT
46, Bahadur, Ranjit, HUR 105, Sarjoo 52, Pooja, Pratikshya
MTU 1075 and Rajendra Mahsuri. Further, qSALTOL1 QTL
for seedling stage salt tolerance and qSSISFH8.1 for
reproductive stage salt tolerance have been transferred to
six popular rice varieties, ADT 45, Gayatri, MTU 1010, PR
114, Pusa 44 and Sarjoo 52. We used foreground selection
markers for the presence of desired gene/QTL and
recombinant selection markers for reduction of linkage drag
around these genes. Genotypic background selection was
done after BC3F3 stage using a 50K SNP chip on a set of 20
advance lines obtained by phenotypic selection for
closeness to the recipient parents. Near-isogenic lines
(NILs) with more than 95% similarity to the recipient parent
genome have been released and notified for commercial
cultivation and are gaining fast popularity. These climate
smart rice varieties will provide production stability in the
adverse ecologies and support farmer’s income and
livelihood.Not Availabl