34 research outputs found

    Controlled neighbor exchanges drive glassy behavior, intermittency and cell streaming in epithelial tissues

    Full text link
    Cell neighbor exchanges are integral to tissue rearrangements in biology, including development and repair. Often these processes occur via topological T1 transitions analogous to those observed in foams, grains and colloids. However, in contrast to in non-living materials the T1 transitions in biological tissues are rate-limited and cannot occur instantaneously due to the finite time required to remodel complex structures at cell-cell junctions. Here we study how this rate-limiting process affects the mechanics and collective behavior of cells in a tissue by introducing this important biological constraint in a theoretical vertex-based model as an intrinsic single-cell property. We report in the absence of this time constraint, the tissue undergoes a motility-driven glass transition characterized by a sharp increase in the intermittency of cell-cell rearrangements. Remarkably, this glass transition disappears as T1 transitions are temporally limited. As a unique consequence of limited rearrangements, we also find that the tissue develops spatially correlated streams of fast and slow cells, in which the fast cells organize into stream-like patterns with leader-follower interactions, and maintain optimally stable cell-cell contacts. The predictions of this work is compared with existing in-vivo experiments in Drosophila pupal development

    Shape and size selective separation of gold nanoclusters by competitive complexation with octadecylamine monolayers at the air–water interface

    No full text
    The paper presents a time-dependent study of shape-dependent preferential complexation of gold nanoparticles to the octadecyl amine (ODA) monolayers at the air–water interface. Room temperature reduction of chloroaurate ions using lemon grass leaf extract yields a mixture of spherical and triangular nanoparticles, which were used for this study. These nanoparticles have a net negative charge on their surface due to the presence of biomolecules from plant extract and thus a strong attractive electrostatic interaction with the positively charged ODA monolayers drives the complexation process. The extent of preferential complexation of the gold nanoparticles to the ODA monolayers is a function of the charge on the particles and the relative mobility of the nanoclusters in the medium. The complexation process has been followed in real time by a host of techniques such as surface pressure–area (π–A) isotherms, UV–vis–NIR spectroscopy and Brewster angle microscopy. The charge and mobility of the gold nanoparticles was confirmed by measurement of their electrophoretic mobility. Langmuir–Blodgett films of the nanogold–ODA composites have been characterized by UV–vis–NIR spectroscopy, Fourier transform infrared spectroscopy, and transmission electron microscopy. These measurements clearly indicate that the cluster mobility and complexation increase with decreasing cluster size. In the competitive complexation process of large and small gold particles, it was observed that some bigger gold particles were also incorporated into the amine matrix even though the cluster mobility is higher for smaller gold particles

    Construction of conductive multilayer films of biogenic triangular gold nanoparticles and their application in chemical vapour sensing

    No full text
    Metal nanoparticles are interesting building blocks for realizing films for a number of applications that include bio- and chemical sensing. To date, spherical metal nanoparticles have been used to generate functional electrical coatings. In this paper we demonstrate the synthesis of electrically conductive coatings using biologically prepared gold nanotriangles as the building blocks. The gold nanotriangles are prepared by the reduction of aqueous chloroaurate ions using an extract of the lemongrass plant (Cymbopogon flexuosus) which are thereafter assembled onto a variety of substrates by simple solution casting. The conductivity of the film shows a drastic fall upon mild heat treatment, leading to the formation of electrically conductive thin films of nanoparticles. We have also investigated the possibility of using the gold nanotriangle films in vapour sensing. A large fall in film resistance is observed upon exposure to polar molecules such as methanol, while little change occurs upon exposure to weakly polar molecules such as chloroform

    Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles

    No full text
    In this paper, we demonstrate the effect of halide ions on the formation of biogenically prepared gold nanotriangles using the leaf extract of lemongrass (Cymbopogon flexuosus) plant. We have also studied the effect of halide ions on the morphology of biogenic nanotriangles. It has been shown that iodide ions have a greater propensity to transform flat gold nanotriangles into circular disklike structures as compared to other halide ions. The study also suggests that the presence of Cl− ions during the synthesis promotes the growth of nanotriangles, whereas the presence of I− ions distorts the nanotriangle morphology and induces the formation of aggregated spherical nanoparticles. The change in the morphology of gold nanotriangles has been explained in terms of the ability of the halide ions to stabilize or inhibit the formation of (111) faces to form [111] oriented gold nanotriangles. Last, we have also shown that the temperature is an important parameter for controlling the aspect ratio and the relative amounts of gold nanotriangles and spherical particles. The results show that, by varying the temperature of reaction condition, the shape, size, and optical properties of anisotropic nanoparticles can be fine-tuned

    Cyclotriphosphazene ring as a platform for multiporphyrin assemblies

    No full text
    Rings around a ring: The synthesis, characterization, material properties and biological studies of novel hexakis porphyrinato cyclotriphosphazene systems (see scheme) and their metal derivatives are described. A simple method has been employed to synthesize a cyclotriphosphazene appended with six porphyrins. The reaction of one equivalent of hexachlorocyclotriphosphazene with six equivalents of 5-(4-hydroxyphenyl)-10,15,20-tri(p-tolyl)porphyrin or -21-thiaporphyrin in tetrahydrofuran in the presence of cesium carbonate, followed by simple column-chromatography purification, afforded the hexaporphyrinato cyclotriphosphazene systems as the single products in 80–90 % yields. The metal(II) derivatives (Cu<SUP>II</SUP>, Zn<SUP>II</SUP>) of the hexaporphyrinato cyclotriphosphazene systems were prepared by treating the hexaporphyrin assemblies with the appropriate metal salts under standard metallation conditions. The compounds are freely soluble in common organic solvents and were characterized by mass spectrometry, NMR, absorption, and fluorescence spectroscopy, and electrochemical techniques. Material studies carried out by using fluorescence microscopy, SEM, and AFM techniques showed that the hexaporphyrinato cyclotriphosphazene systems form ringlike architectures. Preliminary biological studies indicate that the hexacopper(II) porphyrin assembly can be used as an artificial nuclease

    Effective Transport Properties of LiMn(2)O(4) Electrode via Particle-Scale Modeling

    No full text
    The extension of Li-ion batteries, from portable electronics to hybrid and electric vehicles, is significant. Developing a better understanding of the role of material properties and manipulating the morphology of the particle clusters comprising Li-ion electrodes could lead to potential opportunities for attaining higher performance goals, for which the effect of both material properties and morphology needs to be considered in a physics-based model. In this work, different particle packing arrangements are analyzed for the calculation of effective transport properties and reaction density that appear in the porous-electrode formulation due to the volume-averaging process. Surrogate-based analysis is used to systematically construct and validate reduced-order models for species transport at the particle-electrolyte interface. The low effective solid transport predicted through microscale modeling indicates the effect of packing arrangement and tortuosity, an aspect not captured by the Bruggeman's relation. Particle cluster simulations reveal a Li-ion flux quantitatively different than that predicted by the porous-electrode model due to the variation of overpotential at the microscale. The present study offers a first-step towards integration of the effect of microstructure into a macroscale simulation. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3560441] All rights reserved

    Optimization of LiMn2O4 electrode properties in a gradient- and surrogate-based framework

    No full text
    In this study, the effects of discharge rate and LiMn2O4 cathode properties (thickness, porosity, particle size, and solid-state diffusivity and conductivity) on the gravimetric energy and power density of a lithium-ion battery cell are analyzed simultaneously using a cell-level model. Surrogate-based analysis tools are applied to simulation data to construct educed-order models, which are in turn used to perform global sensitivity analysis to compare the relative importance of cathode properties. Based on these results, the cell is then optimized for several distinct physical scenarios using gradient-based methods. The complementary nature of the gradient-and surrogate-based tools is demonstrated by establishing proper bounds and constraints with the surrogate model, and then obtaining accurate optimized solutions with the gradient-based optimizer. These optimal solutions enable the quantification of the tradeoffs between energy and power density, and the effect of optimizing the electrode thickness and porosity. In conjunction with known guidelines, the numerical optimization framework developed herein can be applied directly to cell and pack design

    Biological synthesis of triangular gold nanoprisms

    No full text
    The optoelectronic and physicochemical properties of nanoscale matter are a strong function of particle size. Nanoparticle shape also contributes significantly to modulating their electronic properties. Several shapes ranging from rods to wires to plates to teardrop structures may be obtained by chemical methods; triangular nanoparticles have been synthesized by using a seeded growth process. Here, we report the discovery that the extract from the lemongrass plant, when reacted with aqueous chloroaurate ions, yields a high percentage of thin, flat, single-crystalline gold nanotriangles. The nanotriangles seem to grow by a process involving rapid reduction, assembly and room-temperature sintering of 'liquid-like' spherical gold nanoparticles. The anisotropy in nanoparticle shape results in large near-infrared absorption by the particles, and highly anisotropic electron transport in films of the nanotriangles

    Optimization of a Single Lithium-Ion Battery Cell with a Gradient-Based Algorithm

    No full text
    This paper presents a numerical framework for automating the design of lithium-ion cells to maximize cell energy density while meeting specific power density requirements. The various processes in a battery cell are simulated using a physics-based electrochemistry model. The design is automatically performed by coupling the battery model with a gradient-based optimization algorithm. We demonstrate the potential for gradient-based optimization by applying this framework to optimize the design of a lithium-ion cell with spinel manganese dioxide cathode and meso-carbon micro beads (MCMB) anode for a range of power requirements. Results indicate that variations in the electrode thickness and porosity at optimal cell designs can be quantified via active mass ratios and it is found that the active mass ratios for optimal cell designs are independent of discharge rate. (C) 2013 The Electrochemical Society. All rights reserved
    corecore