277 research outputs found

    Probing the spatial and velocity anisotropies in stellar halos from the Aquarius simulations

    Full text link
    We analyze the spatial anisotropy and the velocity anisotropy in a set of mock stellar halos from the Aquarius simulations. The spatial anisotropy in each mock stellar halo rises progressively with the increasing distance from the halo centre, eventually reaching a maximum near the periphery. Excluding the bound satellites leads to a significant reduction of the spatial anisotropy in each halo. We compare the measured anisotropy in the mock stellar halos with that from their sphericalized versions where all the shape and substructure induced anisotropies are erased. The growth of spatial anisotropy persists throughout the entire halo when the bound satellites are present but remains limited within the inner halo (<60 h−1 kpc<60 \, h^{-1}\, {\rm kpc}) after their exclusion. This indicates that the spatial anisotropy in the inner halo is induced by the diffuse substructures and the halo shape whereas the outer halo anisotropy is dominated by the bound satellites. We find that the outer parts of the stellar halo are kinematically colder than the inner regions. The stellar orbits are predominantly radial but they become rotationally dominated at certain radii that are marked by the prominent β\beta dips. Most of the β\beta dips disappear after the removal of the satellites. A few shallow and broad β\beta dips arise occasionally due to the presence of diffuse streams and clouds. Our analysis suggests that a combined study of the spatial and velocity anisotropies can reveal the structure and the assembly history of the stellar halos.Comment: 15 pages, 9 figures, comments welcom

    Towards a Reference Architecture with Modular Design for Large-scale Genotyping and Phenotyping Data Analysis: A Case Study with Image Data

    Get PDF
    With the rapid advancement of computing technologies, various scientific research communities have been extensively using cloud-based software tools or applications. Cloud-based applications allow users to access software applications from web browsers while relieving them from the installation of any software applications in their desktop environment. For example, Galaxy, GenAP, and iPlant Colaborative are popular cloud-based systems for scientific workflow analysis in the domain of plant Genotyping and Phenotyping. These systems are being used for conducting research, devising new techniques, and sharing the computer assisted analysis results among collaborators. Researchers need to integrate their new workflows/pipelines, tools or techniques with the base system over time. Moreover, large scale data need to be processed within the time-line for more effective analysis. Recently, Big Data technologies are emerging for facilitating large scale data processing with commodity hardware. Among the above-mentioned systems, GenAp is utilizing the Big Data technologies for specific cases only. The structure of such a cloud-based system is highly variable and complex in nature. Software architects and developers need to consider totally different properties and challenges during the development and maintenance phases compared to the traditional business/service oriented systems. Recent studies report that software engineers and data engineers confront challenges to develop analytic tools for supporting large scale and heterogeneous data analysis. Unfortunately, less focus has been given by the software researchers to devise a well-defined methodology and frameworks for flexible design of a cloud system for the Genotyping and Phenotyping domain. To that end, more effective design methodologies and frameworks are an urgent need for cloud based Genotyping and Phenotyping analysis system development that also supports large scale data processing. In our thesis, we conduct a few studies in order to devise a stable reference architecture and modularity model for the software developers and data engineers in the domain of Genotyping and Phenotyping. In the first study, we analyze the architectural changes of existing candidate systems to find out the stability issues. Then, we extract architectural patterns of the candidate systems and propose a conceptual reference architectural model. Finally, we present a case study on the modularity of computation-intensive tasks as an extension of the data-centric development. We show that the data-centric modularity model is at the core of the flexible development of a Genotyping and Phenotyping analysis system. Our proposed model and case study with thousands of images provide a useful knowledge-base for software researchers, developers, and data engineers for cloud based Genotyping and Phenotyping analysis system development

    Probing the NMSSM via Higgs boson signatures from stop cascade decays at the LHC

    Full text link
    Higgs signatures from the cascade decays of light stops are an interesting possibility in the next to minimal supersymmetric standard model (NMSSM). We investigate the potential reach of the light stop mass at the 13 TeV run of the LHC by means of five NMSSM benchmark points where this signature is dominant. These benchmark points are compatible with current Higgs coupling measurements, LHC constraints, dark matter relic density and direct detection constraints. We consider single and di-lepton search strategies, as well as the jet-substructure technique to reconstruct the Higgs bosons. We find that one can probe stop masses up to 1.2 TeV with 300 fb−1\rm fb^{-1} luminosity via the di-lepton channel, while with the jet-substructure method, stop masses up to 1 TeV can be probed with 300 fb−1\rm fb^{-1} luminosity. We also investigate the possibility of the appearance of multiple Higgs peaks over the background in the fat-jet mass distribution, and conclude that such a possibility is viable only at the high luminosity run of 13 TeV LHC.Comment: 20 pages, 5 figures; Two figures updated, typos corrected. Matched with the published versio

    Software Design Change Artifacts Generation through Software Architectural Change Detection and Categorisation

    Get PDF
    Software is solely designed, implemented, tested, and inspected by expert people, unlike other engineering projects where they are mostly implemented by workers (non-experts) after designing by engineers. Researchers and practitioners have linked software bugs, security holes, problematic integration of changes, complex-to-understand codebase, unwarranted mental pressure, and so on in software development and maintenance to inconsistent and complex design and a lack of ways to easily understand what is going on and what to plan in a software system. The unavailability of proper information and insights needed by the development teams to make good decisions makes these challenges worse. Therefore, software design documents and other insightful information extraction are essential to reduce the above mentioned anomalies. Moreover, architectural design artifacts extraction is required to create the developer’s profile to be available to the market for many crucial scenarios. To that end, architectural change detection, categorization, and change description generation are crucial because they are the primary artifacts to trace other software artifacts. However, it is not feasible for humans to analyze all the changes for a single release for detecting change and impact because it is time-consuming, laborious, costly, and inconsistent. In this thesis, we conduct six studies considering the mentioned challenges to automate the architectural change information extraction and document generation that could potentially assist the development and maintenance teams. In particular, (1) we detect architectural changes using lightweight techniques leveraging textual and codebase properties, (2) categorize them considering intelligent perspectives, and (3) generate design change documents by exploiting precise contexts of components’ relations and change purposes which were previously unexplored. Our experiment using 4000+ architectural change samples and 200+ design change documents suggests that our proposed approaches are promising in accuracy and scalability to deploy frequently. Our proposed change detection approach can detect up to 100% of the architectural change instances (and is very scalable). On the other hand, our proposed change classifier’s F1 score is 70%, which is promising given the challenges. Finally, our proposed system can produce descriptive design change artifacts with 75% significance. Since most of our studies are foundational, our approaches and prepared datasets can be used as baselines for advancing research in design change information extraction and documentation

    Fabrication and characterization of crystalline cubic bismuth zinc niobate pyrochlore (Bi<SUB>1.5</SUB>ZnNb<SUB>1.5</SUB>O<SUB>7</SUB>) nanoparticles derived by sol-gel

    Get PDF
    Here, we report the fabrication and characterization of crystalline cubic bismuth zinc niobate pyrochlore, Bi1.5ZnNb1.5O7, (BZN) nanoparticles. A novel sol-gel method is used for the synthesis of air-stable and precipitate-free diol-based sols of BZN which was dried at 150&#176;C and partially calcined at 350 &#176; C/1 h to decompose organics and bring down the free energy barrier for crystallization. Annealed at 450-700 &#176; C/1 h, BZN powder exhibited nanocrystalline morphology. The average BZN nanoparticle size were about 6, 60 and 85 nm for the samples annealed at 450, 600 and 700 &#176; C/1 h, respectively as observed by transmission electron microscope (TEM). The crystallinity and phase formation of the as synthesized nanoparticles were confirmed by the selected-area electron diffraction (SAED), X-ray diffraction (XRD) and high resolution TEM (HRTEM) analysis. Energy-dispersive X-ray spectroscopy (EDX) analysis demonstrated that stoichiometric Bi1.5ZnNb1.5O7 was formed

    Application of Speaker Recognition on Biometric

    Get PDF
    Speaker recognition is the process of determining which registered speaker provides a given utterance followed by the process of accepting or rejecting the identity claim of a speaker. This paper reports on an experimental study involving signal processing in both time and frequency domain, and to receive a small bit of insight into the principles of speech analysis. This was accomplished by recording four speech segments from each person in our classroom, all of them varying slightly. Comparisons and analysis were then made on each signal, depending upon the instructions given by Dr. Qi

    Size effect on the lattice parameter of KCl during mechanical milling

    Get PDF
    The size effect on the lattice parameter of ionic KCl nanocrystals was studied systematically during mechanical milling of pure KCl powder under vacuum. The results suggest anomalous lattice expansion, with the lattice parameter increasing from 6.278&#197; at d=6&#956; m to 6.30307&#197; at d=85nm. The defects generated during ball milling of KCl and surface stress are deemed to be responsible for this lattice parameter expansion
    • …
    corecore