981 research outputs found

    Cortical Learning of Recognition Categories: A Resolution of the Exemplar Vs. Prototype Debate

    Full text link
    Do humans and animals learn exemplars or prototypes when they categorize objects and events in the world? How are different degrees of abstraction realized through learning by neurons in inferotemporal and prefrontal cortex? How do top-down expectations influence the course of learning? Thirty related human cognitive experiments (the 5-4 category structure) have been used to test competing views in the prototype-exemplar debate. In these experiments, during the test phase, subjects unlearn in a characteristic way items that they had learned to categorize perfectly in the training phase. Many cognitive models do not describe how an individual learns or forgets such categories through time. Adaptive Resonance Theory (ART) neural models provide such a description, and also clarify both psychological and neurobiological data. Matching of bottom-up signals with learned top-down expectations plays a key role in ART model learning. Here, an ART model is used to learn incrementally in response to 5-4 category structure stimuli. Simulation results agree with experimental data, achieving perfect categorization in training and a good match to the pattern of errors exhibited by human subjects in the testing phase. These results show how the model learns both prototypes and certain exemplars in the training phase. ART prototypes are, however, unlike the ones posited in the traditional prototype-exemplar debate. Rather, they are critical patterns of features to which a subject learns to pay attention based on past predictive success and the order in which exemplars are experienced. Perturbations of old memories by newly arriving test items generate a performance curve that closely matches the performance pattern of human subjects. The model also clarifies exemplar-based accounts of data concerning amnesia.Defense Advanced Projects Research Agency SyNaPSE program (Hewlett-Packard Company, DARPA HR0011-09-3-0001; HRL Laboratories LLC #801881-BS under HR0011-09-C-0011); Science of Learning Centers program of the National Science Foundation (NSF SBE-0354378

    The influence of muscle pennation angle and cross-sectional area on contact forces in the ankle joint

    No full text
    Data about a muscle’s fibre pennation angle and physiological cross-sectional area are used in musculoskeletal modelling to estimate muscle forces, which are used to calculate joint contact forces. For the leg, muscle architecture data are derived from studies that measured pennation angle at the muscle surface, but not deep within it. Musculoskeletal models developed to estimate joint contact loads have usually been based on the mean values of pennation angle and physiological cross-sectional area. Therefore, the first aim of this study was to investigate differences between superficial and deep pennation angles within each muscle acting over the ankle and predict how differences may influence muscle forces calculated in musculoskeletal modelling. The second aim was to investigate how inter-subject variability in physiological cross-sectional area and pennation angle affects calculated ankle contact forces. Eight cadaveric legs were dissected to excise the muscles acting over the ankle. The mean surface and deep pennation angles, fibre length and physiological cross-sectional area were measured. Cluster analysis was applied to group the muscles according to their architectural characteristics. A previously validated OpenSim model was used to estimate ankle muscle forces and contact loads using architecture data from all eight limbs. The mean surface pennation angle for soleus was significantly greater (54%) than the mean deep pennation angle. Cluster analysis revealed three groups of muscles with similar architecture and function: deep plantarflexors and peroneals, superficial plantarflexors and dorsiflexors. Peak ankle contact force was predicted to occur before toe-off, with magnitude greater than five times bodyweight. Inter-specimen variability in contact force was smallest at peak force. These findings will help improve the development of experimental and computational musculoskeletal models by providing data to estimate force based on both surface and deep pennation angles. Inter-subject variability in muscle architecture affected ankle muscle and contact loads only slightly. The link between muscle architecture and function contributes to the understanding of the relationship between muscle structure and function

    A cadaveric model to evaluate the effect of unloading the medial quadriceps on patellar tracking and patellofemoral joint pressure and stability

    Get PDF
    Background Vastus Medialis Muscles (VMM) damage has been widely identified following patellar dislocation. Rehabilitation programmes have been suggested to strengthen the VMM and reduce clinical symptoms of pain and instability. This controlled laboratory study investigated the hypothesis that reduced Vastus Medialis Obliquus (VMO) and Vastus Medialis Longus (VML) muscle tension would alter patellar tracking, stability and PFJ contact pressures. Methods Nine fresh-frozen dissected cadaveric knees were mounted in a rig with the quadriceps and iliotibial band loaded to 205 N. An optical tracking system measured joint kinematics and pressure sensitive film between the patella and trochlea measured PFJ contact pressures. Measurements were repeated for three conditions: 1. With all quadriceps heads and iliotibial band (ITB) loaded; 2. as 1, but with the VMO muscle unloaded and 3. as 1, but with the VMO and VML unloaded. Measurements were also repeated for the three conditions with a 10 N lateral displacement force applied to the patella. Results Reduction of VMM tension resulted in significant increases in lateral patellar tilt (2.8°) and translation (4 mm), with elevated lateral and reduced medial joint contact pressures from 0.48 to 0.14 MPa, and reduced patellar stability (all p < 0.05). Conclusions These findings provide basic scientific rationale to support the role of quadriceps strengthening to resist patellar lateral maltracking and rebalance the articular contact pressure away from the lateral facet in patients with normal patellofemoral joint anatomy

    Total ankle replacement design and positioning affect implant-bone micromotion and bone strains

    Get PDF
    Implant loosening - commonly linked with elevated initial micromotion - is the primary indication for total ankle replacement (TAR) revision. Finite element modelling (FEM) has not been used to assess micromotion of TAR implants; additionally, the biomech anical consequences of TAR malpositioning - previously linked with higher failure rates - remain unexplored. The aim of this study was to estimate implant - bone micromotion and peri - implant bone strains for optimally positioned and malpositioned TAR prosthe ses, and thereby identify fixation features and malpositioning scenarios increasing the risk of loosening. Computational models simulating three of the most commonly used TAR devices (BOXÂź, MobilityÂź and SaltoÂź) implanted into the tibia/talus and subjected to physiological loads were developed. Mobility and Salto demonstrated the largest micromotion of all tibial and talar components, respectively. Any malpositioning of the implant creating a gap between it and the bone resulted in a considerable increase i n micromotion and bone strains. It was concluded that better primary stability can be achieved through fixation nearer to the joint line and/or while relying on more than a single peg. Incomplete seating on the bone may result in considerably elevated impl ant - bone micromotion and bone strains, thereby increasing the risk for TAR failure

    Medial collateral ligament reconstruction for anteromedial instability of the knee: a biomechanical study in vitro.

    Get PDF
    BACKGROUND: Although a medial collateral ligament (MCL) injury is associated with anteromedial rotatory instability (AMRI) and often with an anterior cruciate ligament (ACL) injury, there has been little work to develop anteromedial (AM) reconstruction to address this laxity. PURPOSE: To measure the ability of a novel "anatomic" AM reconstruction technique to restore native knee laxity for isolated AM insufficiency and combined AM plus posteromedial insufficiency. STUDY DESIGN: Controlled laboratory study. METHODS: A total of 12 cadaveric knees were mounted in a kinematic testing rig that allowed the tibia to be loaded while the knee flexed-extended 0° to 100° with 88-N anteroposterior translation, 5-N·m internal rotation-external rotation (ER), 8-N·m valgus, and combined anterior translation plus ER to simulate AMRI. Joint motion was measured using optical trackers with the knee intact, after superficial MCL (sMCL) and deep MCL (dMCL) transection, and after AM reconstruction of the sMCL and dMCL with semitendinosus autografts. The posteromedial capsule (PMC)/posterior oblique ligament (POL) was then transected to induce a grade 3 medial injury, and kinematic measurements were repeated afterward and again after removing the grafts. Laxity changes were examined using repeated-measures analysis of variance and post-testing. RESULTS: sMCL and dMCL deficiency increased valgus, ER, and AMRI laxities. These laxities did not differ from native values after AM reconstruction. Additional PMC/POL deficiency did not increase these laxities significantly but did increase internal rotation laxity near knee extension; this was not controlled by AM reconstruction. CONCLUSION: AM reconstruction eliminated AMRI after transection of the dMCL and sMCL, and also eliminated AMRI after additional PMC/POL transection. CLINICAL RELEVANCE: Many MCL injuries occur in combination with ACL injuries, causing AMRI. These injuries may rupture the AM capsule and dMCL. Unaddressed MCL deficiency leads to an increased ACL reconstruction failure rate. A dMCL construct oriented anterodistally across the medial joint line, along with an sMCL graft, can restore native knee ER laxity. PMC/POL lesions did not contribute to AMRI

    Neural Structures within Human Meniscofemoral Ligaments: A Cadaveric Study.

    Get PDF
    Aim. To investigate the existence of neural structures within the meniscofemoral ligaments (MFLs) of the human knee. Methods. The MFLs from 8 human cadaveric knees were harvested. 5 Όm sections were H&E-stained and examined under light microscopy. The harvested ligaments were then stained using an S100 monoclonal antibody utilising the ABC technique to detect neural components. Further examination was performed on 60–80 nm sections under electron microscopy. Results. Of the 8 knees, 6 were suitable for examination. From these both MFLs existed in 3, only anterior MFLs were present in 2, and an isolated posterior MFL existed in 1. Out of the 9 MFLs, 4 demonstrated neural structures on light and electron microscopy and this was confirmed with S100 staining. The ultrastructure of these neural components was morphologically similar to mechanoreceptors. Conclusion. Neural structures are present in MFLs near to their meniscal attachments. It is likely that the meniscofemoral ligaments contribute not only as passive secondary restraints to posterior draw but more importantly to proprioception and may therefore play an active role in providing a neurosensory feedback loop. This may be particularly important when the primary restraint has reduced function as in the posterior cruciate ligament—deficient human knee

    Redesigning metal interference screws can improve ease of insertion while maintaining fixation of soft-tissue anterior cruciate ligament reconstruction grafts

    Get PDF
    Purpose: To compare the fixation strength and loads on insertion of a titanium alloy interference screw with a modified tip against a conventional titanium interference screw. Methods: Slippage of bovine digital extensor tendons (as substitutes for human tendon grafts) under cyclic loading and interference fixation strength under a pullout test were recorded in 10 cadaveric knees, with 2 tunnels drilled in each femur and tibia to provide pair-wise comparisons between the modified-tip screw (MS) and conventional screw (CS). To analyze screw insertion, 10 surgeons blindly inserted pairs of the MS and CS into bone-substitute blocks (with polyester shoelaces as graft substitutes), with insertion loads measured using a force/torque sensor. Results: No differences were found between the MS and CS either in graft slippage from the femur (P = .661) or tibia (P = .950) or in ultimate load to failure from the femur (P = .952) or tibia (P = .126). On insertion, the MS required less axial force application (78 ± 38 N, P = .001) and fewer attempted turns (2 ± 1, P < .001) to engage with the bone tunnel than the CS (99 ± 43 N and 4 ± 4, respectively). In 90% of the paired insertion tests, the screw identified by the surgeon as being easier to initially insert was the MS. Conclusions: The MS was found to be easier to engage with the bone tunnel and initially insert than the CS while still achieving similar immediate postsurgical fixation strength. Clinical Relevance: The study shows that screw designs can be improved to ease insertion into a bone tunnel, which should reduce any likelihood of ligament reconstruction graft damage
    • 

    corecore