2 research outputs found

    Exploring Machine Learning for Predicting Cerebral Stroke: A Study in Discovery

    No full text
    Cerebral strokes, the abrupt cessation of blood flow to the brain, lead to a cascade of events, resulting in cellular damage due to oxygen and nutrient deprivation. Contemporary lifestyle factors, including high glucose levels, heart disease, obesity, and diabetes, heighten the risk of stroke. This research investigates the application of robust machine learning (ML) algorithms, including logistic regression (LR), random forest (RF), and K-nearest neighbor (KNN), to the prediction of cerebral strokes. Stroke data is collected from Harvard Dataverse Repository. The data includes—clinical, physiological, behavioral, demographic, and historical data. The Synthetic Minority Oversampling Technique (SMOTE), adaptive synthetic sampling (ADASYN), and the Random Oversampling Technique (ROSE) are used to address class imbalances to improve the accuracy of minority classes. To address the challenge of forecasting strokes from partial and imbalanced physiological data, this study introduces a novel hybrid ML approach by combining a machine learning method with an oversampling technique called ADASYN_RF. ADASYN is an oversampling technique used to resample the imbalanced dataset then RF is implemented on the resampled dataset. Also, other oversampling techniques and ML models are implemented to compare the results. Notably, the RF algorithm paired with ADASYN achieves an exceptional performance of 99% detection accuracy, exhibiting its dominance in stroke prediction. The proposed approach enables cost-effective, precise stroke prediction, providing a valuable tool for clinical diagnosis

    Identification of NS2B-NS3 Protease Inhibitors for Therapeutic Application in ZIKV Infection: A Pharmacophore-Based High-Throughput Virtual Screening and MD Simulations Approaches

    No full text
    Zika virus (ZIKV) pandemic and its implication in congenital malformations and severe neurological disorders had created serious threats to global health. ZIKV is a mosquito-borne flavivirus which spread rapidly and infect a large number of people in a shorter time-span. Due to the lack of effective therapeutics, this had become paramount urgency to discover effective drug molecules to encounter the viral infection. Various anti-ZIKV drug discovery efforts during the past several years had been unsuccessful to develop an effective cure. The NS2B-NS3 protein was reported as an attractive therapeutic target for inhibiting viral proliferation, due to its central role in viral replication and maturation of non-structural viral proteins. Therefore, the current in silico drug exploration aimed to identify the novel inhibitors of Zika NS2B-NS3 protease by implementing an e-pharmacophore-based high-throughput virtual screening. A 3D e-pharmacophore model was generated based on the five-featured (ADPRR) pharmacophore hypothesis. Subsequently, the predicted model is further subjected to the high-throughput virtual screening to reveal top hit molecules from the various small molecule databases. Initial hits were examined in terms of binding free energies and ADME properties to identify the candidate hit exhibiting a favourable pharmacokinetic profile. Eventually, molecular dynamic (MD) simulations studies were conducted to evaluate the binding stability of the hit molecule inside the receptor cavity. The findings of the in silico analysis manifested affirmative evidence for three hit molecules with −64.28, −55.15 and −50.16 kcal/mol binding free energies, as potent inhibitors of Zika NS2B-NS3 protease. Hence, these molecules holds the promising potential to serve as a prospective candidates to design effective drugs against ZIKV and related viral infections
    corecore